Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfadjliftmap2 Structured version   Visualization version   GIF version

Theorem dfadjliftmap2 38481
Description: Alternate definition of the adjoined lift map. (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
dfadjliftmap2 (𝑅 AdjLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) ↦ (𝑚 ∪ [𝑚]𝑅))
Distinct variable groups:   𝐴,𝑚   𝑅,𝑚

Proof of Theorem dfadjliftmap2
StepHypRef Expression
1 df-adjliftmap 38480 . 2 (𝑅 AdjLiftMap 𝐴) = (𝑚 ∈ dom ((𝑅 E ) ↾ 𝐴) ↦ [𝑚]((𝑅 E ) ↾ 𝐴))
2 elinel1 4148 . . . . 5 (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) → 𝑚𝐴)
3 dmuncnvepres 38425 . . . . 5 dom ((𝑅 E ) ↾ 𝐴) = (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅})))
42, 3eleq2s 2849 . . . 4 (𝑚 ∈ dom ((𝑅 E ) ↾ 𝐴) → 𝑚𝐴)
5 ecuncnvepres 38429 . . . 4 (𝑚𝐴 → [𝑚]((𝑅 E ) ↾ 𝐴) = (𝑚 ∪ [𝑚]𝑅))
64, 5syl 17 . . 3 (𝑚 ∈ dom ((𝑅 E ) ↾ 𝐴) → [𝑚]((𝑅 E ) ↾ 𝐴) = (𝑚 ∪ [𝑚]𝑅))
76mpteq2ia 5184 . 2 (𝑚 ∈ dom ((𝑅 E ) ↾ 𝐴) ↦ [𝑚]((𝑅 E ) ↾ 𝐴)) = (𝑚 ∈ dom ((𝑅 E ) ↾ 𝐴) ↦ (𝑚 ∪ [𝑚]𝑅))
83mpteq1i 5180 . 2 (𝑚 ∈ dom ((𝑅 E ) ↾ 𝐴) ↦ (𝑚 ∪ [𝑚]𝑅)) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) ↦ (𝑚 ∪ [𝑚]𝑅))
91, 7, 83eqtri 2758 1 (𝑅 AdjLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) ↦ (𝑚 ∪ [𝑚]𝑅))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  cin 3896  c0 4280  {csn 4573  cmpt 5170   E cep 5513  ccnv 5613  dom cdm 5614  cres 5616  [cec 8620   AdjLiftMap cadjliftmap 38225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-adjliftmap 38480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator