| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfadjliftmap2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the adjoined lift map. (Contributed by Peter Mazsa, 28-Jan-2026.) |
| Ref | Expression |
|---|---|
| dfadjliftmap2 | ⊢ (𝑅 AdjLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) ↦ (𝑚 ∪ [𝑚]𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-adjliftmap 38480 | . 2 ⊢ (𝑅 AdjLiftMap 𝐴) = (𝑚 ∈ dom ((𝑅 ∪ ◡ E ) ↾ 𝐴) ↦ [𝑚]((𝑅 ∪ ◡ E ) ↾ 𝐴)) | |
| 2 | elinel1 4148 | . . . . 5 ⊢ (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) → 𝑚 ∈ 𝐴) | |
| 3 | dmuncnvepres 38425 | . . . . 5 ⊢ dom ((𝑅 ∪ ◡ E ) ↾ 𝐴) = (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) | |
| 4 | 2, 3 | eleq2s 2849 | . . . 4 ⊢ (𝑚 ∈ dom ((𝑅 ∪ ◡ E ) ↾ 𝐴) → 𝑚 ∈ 𝐴) |
| 5 | ecuncnvepres 38429 | . . . 4 ⊢ (𝑚 ∈ 𝐴 → [𝑚]((𝑅 ∪ ◡ E ) ↾ 𝐴) = (𝑚 ∪ [𝑚]𝑅)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑚 ∈ dom ((𝑅 ∪ ◡ E ) ↾ 𝐴) → [𝑚]((𝑅 ∪ ◡ E ) ↾ 𝐴) = (𝑚 ∪ [𝑚]𝑅)) |
| 7 | 6 | mpteq2ia 5184 | . 2 ⊢ (𝑚 ∈ dom ((𝑅 ∪ ◡ E ) ↾ 𝐴) ↦ [𝑚]((𝑅 ∪ ◡ E ) ↾ 𝐴)) = (𝑚 ∈ dom ((𝑅 ∪ ◡ E ) ↾ 𝐴) ↦ (𝑚 ∪ [𝑚]𝑅)) |
| 8 | 3 | mpteq1i 5180 | . 2 ⊢ (𝑚 ∈ dom ((𝑅 ∪ ◡ E ) ↾ 𝐴) ↦ (𝑚 ∪ [𝑚]𝑅)) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) ↦ (𝑚 ∪ [𝑚]𝑅)) |
| 9 | 1, 7, 8 | 3eqtri 2758 | 1 ⊢ (𝑅 AdjLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅}))) ↦ (𝑚 ∪ [𝑚]𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 ↦ cmpt 5170 E cep 5513 ◡ccnv 5613 dom cdm 5614 ↾ cres 5616 [cec 8620 AdjLiftMap cadjliftmap 38225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-adjliftmap 38480 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |