| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecelqsi | Structured version Visualization version GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
| 2 | ecelqsw 8693 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 [cec 8620 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 |
| This theorem is referenced by: ecopqsi 8695 addsrpr 10963 mulsrpr 10964 0r 10968 1sr 10969 m1r 10970 addclsr 10971 mulclsr 10972 quseccl0 19095 ghmqusnsglem1 19190 ghmquskerlem1 19193 ghmquskerco 19194 ghmqusker 19197 orbsta 19223 frgpeccl 19671 rngqiprngimf 21232 qustgphaus 24036 vitalilem2 25535 vitalilem3 25536 rloccring 33232 rloc0g 33233 rloc1r 33234 rlocf1 33235 fracfld 33269 nsgqusf1olem1 33373 qsidomlem1 33412 qsdrngilem 33454 qsdrngi 33455 qsdrnglem2 33456 zringfrac 33514 pstmfval 33904 |
| Copyright terms: Public domain | W3C validator |