MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsi Structured version   Visualization version   GIF version

Theorem ecelqsi 8787
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecelqsi.1 𝑅 ∈ V
Assertion
Ref Expression
ecelqsi (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsi
StepHypRef Expression
1 ecelqsi.1 . 2 𝑅 ∈ V
2 ecelqsg 8786 . 2 ((𝑅 ∈ V ∧ 𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
31, 2mpan 690 1 (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  [cec 8717   / cqs 8718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721  df-qs 8725
This theorem is referenced by:  ecopqsi  8788  addsrpr  11089  mulsrpr  11090  0r  11094  1sr  11095  m1r  11096  addclsr  11097  mulclsr  11098  quseccl0  19168  ghmqusnsglem1  19263  ghmquskerlem1  19266  ghmquskerco  19267  ghmqusker  19270  orbsta  19296  frgpeccl  19742  rngqiprngimf  21258  qustgphaus  24061  vitalilem2  25562  vitalilem3  25563  rloccring  33265  rloc0g  33266  rloc1r  33267  rlocf1  33268  fracfld  33302  nsgqusf1olem1  33428  qsidomlem1  33467  qsdrngilem  33509  qsdrngi  33510  qsdrnglem2  33511  zringfrac  33569  pstmfval  33927
  Copyright terms: Public domain W3C validator