MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsi Structured version   Visualization version   GIF version

Theorem ecelqsi 8769
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecelqsi.1 𝑅 ∈ V
Assertion
Ref Expression
ecelqsi (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsi
StepHypRef Expression
1 ecelqsi.1 . 2 𝑅 ∈ V
2 ecelqsg 8768 . 2 ((𝑅 ∈ V ∧ 𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
31, 2mpan 688 1 (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474  [cec 8703   / cqs 8704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8707  df-qs 8711
This theorem is referenced by:  ecopqsi  8770  addsrpr  11072  mulsrpr  11073  0r  11077  1sr  11078  m1r  11079  addclsr  11080  mulclsr  11081  quseccl0  19100  orbsta  19218  frgpeccl  19670  rngqiprngimf  21056  qustgphaus  23847  vitalilem2  25350  vitalilem3  25351  nsgqusf1olem1  32786  ghmquskerlem1  32790  ghmquskerco  32791  ghmqusker  32794  qsidomlem1  32833  qsdrngilem  32870  qsdrngi  32871  qsdrnglem2  32872  pstmfval  33162
  Copyright terms: Public domain W3C validator