![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecelqsi | Structured version Visualization version GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsi.1 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
2 | ecelqsg 8830 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 [cec 8761 / cqs 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 |
This theorem is referenced by: ecopqsi 8832 addsrpr 11144 mulsrpr 11145 0r 11149 1sr 11150 m1r 11151 addclsr 11152 mulclsr 11153 quseccl0 19225 ghmqusnsglem1 19320 ghmquskerlem1 19323 ghmquskerco 19324 ghmqusker 19327 orbsta 19353 frgpeccl 19803 rngqiprngimf 21330 qustgphaus 24152 vitalilem2 25663 vitalilem3 25664 rloccring 33242 rloc0g 33243 rloc1r 33244 rlocf1 33245 fracfld 33275 nsgqusf1olem1 33406 qsidomlem1 33445 qsdrngilem 33487 qsdrngi 33488 qsdrnglem2 33489 zringfrac 33547 pstmfval 33842 |
Copyright terms: Public domain | W3C validator |