| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecelqsi | Structured version Visualization version GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
| 2 | ecelqsg 8786 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 [cec 8717 / cqs 8718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 df-qs 8725 |
| This theorem is referenced by: ecopqsi 8788 addsrpr 11089 mulsrpr 11090 0r 11094 1sr 11095 m1r 11096 addclsr 11097 mulclsr 11098 quseccl0 19168 ghmqusnsglem1 19263 ghmquskerlem1 19266 ghmquskerco 19267 ghmqusker 19270 orbsta 19296 frgpeccl 19742 rngqiprngimf 21258 qustgphaus 24061 vitalilem2 25562 vitalilem3 25563 rloccring 33265 rloc0g 33266 rloc1r 33267 rlocf1 33268 fracfld 33302 nsgqusf1olem1 33428 qsidomlem1 33467 qsdrngilem 33509 qsdrngi 33510 qsdrnglem2 33511 zringfrac 33569 pstmfval 33927 |
| Copyright terms: Public domain | W3C validator |