| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecelqsi | Structured version Visualization version GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
| 2 | ecelqsw 8699 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 [cec 8626 / cqs 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 |
| This theorem is referenced by: ecopqsi 8701 addsrpr 10973 mulsrpr 10974 0r 10978 1sr 10979 m1r 10980 addclsr 10981 mulclsr 10982 quseccl0 19099 ghmqusnsglem1 19194 ghmquskerlem1 19197 ghmquskerco 19198 ghmqusker 19201 orbsta 19227 frgpeccl 19675 rngqiprngimf 21236 qustgphaus 24039 vitalilem2 25538 vitalilem3 25539 rloccring 33244 rloc0g 33245 rloc1r 33246 rlocf1 33247 fracfld 33281 nsgqusf1olem1 33385 qsidomlem1 33424 qsdrngilem 33466 qsdrngi 33467 qsdrnglem2 33468 zringfrac 33526 pstmfval 33930 |
| Copyright terms: Public domain | W3C validator |