| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecelqsi | Structured version Visualization version GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
| 2 | ecelqsw 8745 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 [cec 8672 / cqs 8673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 |
| This theorem is referenced by: ecopqsi 8747 addsrpr 11035 mulsrpr 11036 0r 11040 1sr 11041 m1r 11042 addclsr 11043 mulclsr 11044 quseccl0 19124 ghmqusnsglem1 19219 ghmquskerlem1 19222 ghmquskerco 19223 ghmqusker 19226 orbsta 19252 frgpeccl 19698 rngqiprngimf 21214 qustgphaus 24017 vitalilem2 25517 vitalilem3 25518 rloccring 33228 rloc0g 33229 rloc1r 33230 rlocf1 33231 fracfld 33265 nsgqusf1olem1 33391 qsidomlem1 33430 qsdrngilem 33472 qsdrngi 33473 qsdrnglem2 33474 zringfrac 33532 pstmfval 33893 |
| Copyright terms: Public domain | W3C validator |