Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecres Structured version   Visualization version   GIF version

Theorem ecres 38267
Description: Restricted coset of 𝐵. (Contributed by Peter Mazsa, 9-Dec-2018.)
Assertion
Ref Expression
ecres [𝐵](𝑅𝐴) = {𝑥 ∣ (𝐵𝐴𝐵𝑅𝑥)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem ecres
StepHypRef Expression
1 elecres 8719 . . 3 (𝑥 ∈ V → (𝑥 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑥)))
21elv 3452 . 2 (𝑥 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑥))
32eqabi 2863 1 [𝐵](𝑅𝐴) = {𝑥 ∣ (𝐵𝐴𝐵𝑅𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447   class class class wbr 5107  cres 5640  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673
This theorem is referenced by:  eccnvepres  38268
  Copyright terms: Public domain W3C validator