Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecres Structured version   Visualization version   GIF version

Theorem ecres 38301
Description: Restricted coset of 𝐵. (Contributed by Peter Mazsa, 9-Dec-2018.)
Assertion
Ref Expression
ecres [𝐵](𝑅𝐴) = {𝑥 ∣ (𝐵𝐴𝐵𝑅𝑥)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem ecres
StepHypRef Expression
1 elecres 38300 . . 3 (𝑥 ∈ V → (𝑥 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑥)))
21elv 3469 . 2 (𝑥 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑥))
32eqabi 2871 1 [𝐵](𝑅𝐴) = {𝑥 ∣ (𝐵𝐴𝐵𝑅𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  Vcvv 3464   class class class wbr 5124  cres 5661  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726
This theorem is referenced by:  eccnvepres  38303
  Copyright terms: Public domain W3C validator