![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecres2 | Structured version Visualization version GIF version |
Description: The restricted coset of 𝐵 when 𝐵 is an element of the restriction. (Contributed by Peter Mazsa, 16-Oct-2018.) |
Ref | Expression |
---|---|
ecres2 | ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecres 37975 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
2 | 1 | elv 3468 | . . . 4 ⊢ (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
3 | 2 | baib 534 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ 𝐵𝑅𝑦)) |
4 | 3 | eqabdv 2860 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = {𝑦 ∣ 𝐵𝑅𝑦}) |
5 | dfec2 8737 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 = {𝑦 ∣ 𝐵𝑅𝑦}) | |
6 | 4, 5 | eqtr4d 2769 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 Vcvv 3462 class class class wbr 5153 ↾ cres 5684 [cec 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8736 |
This theorem is referenced by: eccnvepres2 37983 eldmqsres 37985 qsresid 38023 ecex2 38026 |
Copyright terms: Public domain | W3C validator |