Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecres2 | Structured version Visualization version GIF version |
Description: The restricted coset of 𝐵 when 𝐵 is an element of the restriction. (Contributed by Peter Mazsa, 16-Oct-2018.) |
Ref | Expression |
---|---|
ecres2 | ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecres 36550 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
2 | 1 | elv 3447 | . . . 4 ⊢ (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
3 | 2 | baib 536 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ 𝐵𝑅𝑦)) |
4 | 3 | abbi2dv 2875 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = {𝑦 ∣ 𝐵𝑅𝑦}) |
5 | dfec2 8572 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 = {𝑦 ∣ 𝐵𝑅𝑦}) | |
6 | 4, 5 | eqtr4d 2779 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 Vcvv 3441 class class class wbr 5092 ↾ cres 5622 [cec 8567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-rel 5627 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ec 8571 |
This theorem is referenced by: eccnvepres2 36558 eldmqsres 36560 qsresid 36599 ecex2 36602 |
Copyright terms: Public domain | W3C validator |