Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecres2 Structured version   Visualization version   GIF version

Theorem ecres2 36393
Description: The restricted coset of 𝐵 when 𝐵 is an element of the restriction. (Contributed by Peter Mazsa, 16-Oct-2018.)
Assertion
Ref Expression
ecres2 (𝐵𝐴 → [𝐵](𝑅𝐴) = [𝐵]𝑅)

Proof of Theorem ecres2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elecres 36391 . . . . 5 (𝑦 ∈ V → (𝑦 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑦)))
21elv 3436 . . . 4 (𝑦 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑦))
32baib 535 . . 3 (𝐵𝐴 → (𝑦 ∈ [𝐵](𝑅𝐴) ↔ 𝐵𝑅𝑦))
43abbi2dv 2878 . 2 (𝐵𝐴 → [𝐵](𝑅𝐴) = {𝑦𝐵𝑅𝑦})
5 dfec2 8475 . 2 (𝐵𝐴 → [𝐵]𝑅 = {𝑦𝐵𝑅𝑦})
64, 5eqtr4d 2782 1 (𝐵𝐴 → [𝐵](𝑅𝐴) = [𝐵]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  {cab 2716  Vcvv 3430   class class class wbr 5078  cres 5590  [cec 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ec 8474
This theorem is referenced by:  eccnvepres2  36398  eldmqsres  36400  qsresid  36439  ecex2  36442
  Copyright terms: Public domain W3C validator