![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecres2 | Structured version Visualization version GIF version |
Description: The restricted coset of 𝐵 when 𝐵 is an element of the restriction. (Contributed by Peter Mazsa, 16-Oct-2018.) |
Ref | Expression |
---|---|
ecres2 | ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecres 38259 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
2 | 1 | elv 3483 | . . . 4 ⊢ (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
3 | 2 | baib 535 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ 𝐵𝑅𝑦)) |
4 | 3 | eqabdv 2873 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = {𝑦 ∣ 𝐵𝑅𝑦}) |
5 | dfec2 8747 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 = {𝑦 ∣ 𝐵𝑅𝑦}) | |
6 | 4, 5 | eqtr4d 2778 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 class class class wbr 5148 ↾ cres 5691 [cec 8742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 |
This theorem is referenced by: eccnvepres2 38267 eldmqsres 38269 qsresid 38307 ecex2 38310 |
Copyright terms: Public domain | W3C validator |