MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta Structured version   Visualization version   GIF version

Theorem orbsta 18661
Description: The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
orbsta.f 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
orbsta.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Distinct variable groups:   𝑔,𝑘,𝑥,𝑦,   𝑢,𝑔, ,𝑘,𝑥,𝑦   𝑥,𝐻,𝑦   𝐴,𝑔,𝑘,𝑢,𝑥,𝑦   𝑔,𝐺,𝑘,𝑢,𝑥,𝑦   𝑔,𝑋,𝑘,𝑢,𝑥,𝑦   𝑘,𝑂   𝑔,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐹(𝑥,𝑦,𝑢,𝑔,𝑘)   𝐻(𝑢,𝑔,𝑘)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta
Dummy variables 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.1 . . . . 5 𝑋 = (Base‘𝐺)
2 gasta.2 . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
3 orbsta.r . . . . 5 = (𝐺 ~QG 𝐻)
4 orbsta.f . . . . 5 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
51, 2, 3, 4orbstafun 18659 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
6 simpr 488 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐴𝑌)
76adantr 484 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑌)
81gaf 18643 . . . . . . . . . 10 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
98adantr 484 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → :(𝑋 × 𝑌)⟶𝑌)
109adantr 484 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → :(𝑋 × 𝑌)⟶𝑌)
11 simpr 488 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝑘𝑋)
1210, 11, 7fovrnd 7358 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ 𝑌)
13 eqid 2736 . . . . . . . 8 (𝑘 𝐴) = (𝑘 𝐴)
14 oveq1 7198 . . . . . . . . . 10 ( = 𝑘 → ( 𝐴) = (𝑘 𝐴))
1514eqeq1d 2738 . . . . . . . . 9 ( = 𝑘 → (( 𝐴) = (𝑘 𝐴) ↔ (𝑘 𝐴) = (𝑘 𝐴)))
1615rspcev 3527 . . . . . . . 8 ((𝑘𝑋 ∧ (𝑘 𝐴) = (𝑘 𝐴)) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
1711, 13, 16sylancl 589 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
18 orbsta.o . . . . . . . 8 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918gaorb 18655 . . . . . . 7 (𝐴𝑂(𝑘 𝐴) ↔ (𝐴𝑌 ∧ (𝑘 𝐴) ∈ 𝑌 ∧ ∃𝑋 ( 𝐴) = (𝑘 𝐴)))
207, 12, 17, 19syl3anbrc 1345 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑂(𝑘 𝐴))
21 ovex 7224 . . . . . . 7 (𝑘 𝐴) ∈ V
22 elecg 8412 . . . . . . 7 (((𝑘 𝐴) ∈ V ∧ 𝐴𝑌) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2321, 7, 22sylancr 590 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2420, 23mpbird 260 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ [𝐴]𝑂)
251, 2gastacl 18657 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
261, 3eqger 18548 . . . . . 6 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
2725, 26syl 17 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Er 𝑋)
281fvexi 6709 . . . . . 6 𝑋 ∈ V
2928a1i 11 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝑋 ∈ V)
304, 24, 27, 29qliftf 8465 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (Fun 𝐹𝐹:(𝑋 / )⟶[𝐴]𝑂))
315, 30mpbid 235 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )⟶[𝐴]𝑂)
32 eqid 2736 . . . . 5 (𝑋 / ) = (𝑋 / )
33 fveqeq2 6704 . . . . . . 7 ([𝑧] = 𝑎 → ((𝐹‘[𝑧] ) = (𝐹𝑏) ↔ (𝐹𝑎) = (𝐹𝑏)))
34 eqeq1 2740 . . . . . . 7 ([𝑧] = 𝑎 → ([𝑧] = 𝑏𝑎 = 𝑏))
3533, 34imbi12d 348 . . . . . 6 ([𝑧] = 𝑎 → (((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
3635ralbidv 3108 . . . . 5 ([𝑧] = 𝑎 → (∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
37 fveq2 6695 . . . . . . . . 9 ([𝑤] = 𝑏 → (𝐹‘[𝑤] ) = (𝐹𝑏))
3837eqeq2d 2747 . . . . . . . 8 ([𝑤] = 𝑏 → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝐹‘[𝑧] ) = (𝐹𝑏)))
39 eqeq2 2748 . . . . . . . 8 ([𝑤] = 𝑏 → ([𝑧] = [𝑤] ↔ [𝑧] = 𝑏))
4038, 39imbi12d 348 . . . . . . 7 ([𝑤] = 𝑏 → (((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ) ↔ ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏)))
411, 2, 3, 4orbstaval 18660 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
4241adantrr 717 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
431, 2, 3, 4orbstaval 18660 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4443adantrl 716 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4542, 44eqeq12d 2752 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝑧 𝐴) = (𝑤 𝐴)))
461, 2, 3gastacos 18658 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ (𝑧 𝐴) = (𝑤 𝐴)))
4727adantr 484 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → Er 𝑋)
48 simprl 771 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
4947, 48erth 8418 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ [𝑧] = [𝑤] ))
5045, 46, 493bitr2d 310 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ [𝑧] = [𝑤] ))
5150biimpd 232 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5251anassrs 471 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5332, 40, 52ectocld 8444 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑏 ∈ (𝑋 / )) → ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5453ralrimiva 3095 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → ∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5532, 36, 54ectocld 8444 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑎 ∈ (𝑋 / )) → ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
5655ralrimiva 3095 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
57 dff13 7045 . . 3 (𝐹:(𝑋 / )–1-1→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
5831, 56, 57sylanbrc 586 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1→[𝐴]𝑂)
59 vex 3402 . . . . . . . . 9 ∈ V
60 elecg 8412 . . . . . . . . 9 (( ∈ V ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6159, 6, 60sylancr 590 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6218gaorb 18655 . . . . . . . 8 (𝐴𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6361, 62bitrdi 290 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = )))
6463biimpa 480 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6564simp3d 1146 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑤𝑋 (𝑤 𝐴) = )
663ovexi 7225 . . . . . . . . . 10 ∈ V
6766ecelqsi 8433 . . . . . . . . 9 (𝑤𝑋 → [𝑤] ∈ (𝑋 / ))
6843eqcomd 2742 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝑤 𝐴) = (𝐹‘[𝑤] ))
69 fveq2 6695 . . . . . . . . . 10 (𝑧 = [𝑤] → (𝐹𝑧) = (𝐹‘[𝑤] ))
7069rspceeqv 3542 . . . . . . . . 9 (([𝑤] ∈ (𝑋 / ) ∧ (𝑤 𝐴) = (𝐹‘[𝑤] )) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
7167, 68, 70syl2an2 686 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
72 eqeq1 2740 . . . . . . . . 9 ((𝑤 𝐴) = → ((𝑤 𝐴) = (𝐹𝑧) ↔ = (𝐹𝑧)))
7372rexbidv 3206 . . . . . . . 8 ((𝑤 𝐴) = → (∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧) ↔ ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7471, 73syl5ibcom 248 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ((𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7574rexlimdva 3193 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (∃𝑤𝑋 (𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7675imp 410 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∃𝑤𝑋 (𝑤 𝐴) = ) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7765, 76syldan 594 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7877ralrimiva 3095 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
79 dffo3 6899 . . 3 (𝐹:(𝑋 / )–onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
8031, 78, 79sylanbrc 586 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–onto→[𝐴]𝑂)
81 df-f1o 6365 . 2 (𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )–1-1→[𝐴]𝑂𝐹:(𝑋 / )–onto→[𝐴]𝑂))
8258, 80, 81sylanbrc 586 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wrex 3052  {crab 3055  Vcvv 3398  wss 3853  {cpr 4529  cop 4533   class class class wbr 5039  {copab 5101  cmpt 5120   × cxp 5534  ran crn 5537  Fun wfun 6352  wf 6354  1-1wf1 6355  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191   Er wer 8366  [cec 8367   / cqs 8368  Basecbs 16666  SubGrpcsubg 18491   ~QG cqg 18493   GrpAct cga 18637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-subg 18494  df-eqg 18496  df-ga 18638
This theorem is referenced by:  orbsta2  18662
  Copyright terms: Public domain W3C validator