MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta Structured version   Visualization version   GIF version

Theorem orbsta 19218
Description: The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
orbsta.f 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
orbsta.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Distinct variable groups:   𝑔,𝑘,𝑥,𝑦,   𝑢,𝑔, ,𝑘,𝑥,𝑦   𝑥,𝐻,𝑦   𝐴,𝑔,𝑘,𝑢,𝑥,𝑦   𝑔,𝐺,𝑘,𝑢,𝑥,𝑦   𝑔,𝑋,𝑘,𝑢,𝑥,𝑦   𝑘,𝑂   𝑔,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐹(𝑥,𝑦,𝑢,𝑔,𝑘)   𝐻(𝑢,𝑔,𝑘)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta
Dummy variables 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.1 . . . . 5 𝑋 = (Base‘𝐺)
2 gasta.2 . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
3 orbsta.r . . . . 5 = (𝐺 ~QG 𝐻)
4 orbsta.f . . . . 5 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
51, 2, 3, 4orbstafun 19216 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
6 simpr 485 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐴𝑌)
76adantr 481 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑌)
81gaf 19200 . . . . . . . . . 10 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
98adantr 481 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → :(𝑋 × 𝑌)⟶𝑌)
109adantr 481 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → :(𝑋 × 𝑌)⟶𝑌)
11 simpr 485 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝑘𝑋)
1210, 11, 7fovcdmd 7581 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ 𝑌)
13 eqid 2732 . . . . . . . 8 (𝑘 𝐴) = (𝑘 𝐴)
14 oveq1 7418 . . . . . . . . . 10 ( = 𝑘 → ( 𝐴) = (𝑘 𝐴))
1514eqeq1d 2734 . . . . . . . . 9 ( = 𝑘 → (( 𝐴) = (𝑘 𝐴) ↔ (𝑘 𝐴) = (𝑘 𝐴)))
1615rspcev 3612 . . . . . . . 8 ((𝑘𝑋 ∧ (𝑘 𝐴) = (𝑘 𝐴)) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
1711, 13, 16sylancl 586 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
18 orbsta.o . . . . . . . 8 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918gaorb 19212 . . . . . . 7 (𝐴𝑂(𝑘 𝐴) ↔ (𝐴𝑌 ∧ (𝑘 𝐴) ∈ 𝑌 ∧ ∃𝑋 ( 𝐴) = (𝑘 𝐴)))
207, 12, 17, 19syl3anbrc 1343 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑂(𝑘 𝐴))
21 ovex 7444 . . . . . . 7 (𝑘 𝐴) ∈ V
22 elecg 8748 . . . . . . 7 (((𝑘 𝐴) ∈ V ∧ 𝐴𝑌) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2321, 7, 22sylancr 587 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2420, 23mpbird 256 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ [𝐴]𝑂)
251, 2gastacl 19214 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
261, 3eqger 19094 . . . . . 6 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
2725, 26syl 17 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Er 𝑋)
281fvexi 6905 . . . . . 6 𝑋 ∈ V
2928a1i 11 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝑋 ∈ V)
304, 24, 27, 29qliftf 8801 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (Fun 𝐹𝐹:(𝑋 / )⟶[𝐴]𝑂))
315, 30mpbid 231 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )⟶[𝐴]𝑂)
32 eqid 2732 . . . . 5 (𝑋 / ) = (𝑋 / )
33 fveqeq2 6900 . . . . . . 7 ([𝑧] = 𝑎 → ((𝐹‘[𝑧] ) = (𝐹𝑏) ↔ (𝐹𝑎) = (𝐹𝑏)))
34 eqeq1 2736 . . . . . . 7 ([𝑧] = 𝑎 → ([𝑧] = 𝑏𝑎 = 𝑏))
3533, 34imbi12d 344 . . . . . 6 ([𝑧] = 𝑎 → (((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
3635ralbidv 3177 . . . . 5 ([𝑧] = 𝑎 → (∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
37 fveq2 6891 . . . . . . . . 9 ([𝑤] = 𝑏 → (𝐹‘[𝑤] ) = (𝐹𝑏))
3837eqeq2d 2743 . . . . . . . 8 ([𝑤] = 𝑏 → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝐹‘[𝑧] ) = (𝐹𝑏)))
39 eqeq2 2744 . . . . . . . 8 ([𝑤] = 𝑏 → ([𝑧] = [𝑤] ↔ [𝑧] = 𝑏))
4038, 39imbi12d 344 . . . . . . 7 ([𝑤] = 𝑏 → (((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ) ↔ ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏)))
411, 2, 3, 4orbstaval 19217 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
4241adantrr 715 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
431, 2, 3, 4orbstaval 19217 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4443adantrl 714 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4542, 44eqeq12d 2748 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝑧 𝐴) = (𝑤 𝐴)))
461, 2, 3gastacos 19215 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ (𝑧 𝐴) = (𝑤 𝐴)))
4727adantr 481 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → Er 𝑋)
48 simprl 769 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
4947, 48erth 8754 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ [𝑧] = [𝑤] ))
5045, 46, 493bitr2d 306 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ [𝑧] = [𝑤] ))
5150biimpd 228 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5251anassrs 468 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5332, 40, 52ectocld 8780 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑏 ∈ (𝑋 / )) → ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5453ralrimiva 3146 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → ∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5532, 36, 54ectocld 8780 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑎 ∈ (𝑋 / )) → ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
5655ralrimiva 3146 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
57 dff13 7256 . . 3 (𝐹:(𝑋 / )–1-1→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
5831, 56, 57sylanbrc 583 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1→[𝐴]𝑂)
59 vex 3478 . . . . . . . . 9 ∈ V
60 elecg 8748 . . . . . . . . 9 (( ∈ V ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6159, 6, 60sylancr 587 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6218gaorb 19212 . . . . . . . 8 (𝐴𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6361, 62bitrdi 286 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = )))
6463biimpa 477 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6564simp3d 1144 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑤𝑋 (𝑤 𝐴) = )
663ovexi 7445 . . . . . . . . . 10 ∈ V
6766ecelqsi 8769 . . . . . . . . 9 (𝑤𝑋 → [𝑤] ∈ (𝑋 / ))
6843eqcomd 2738 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝑤 𝐴) = (𝐹‘[𝑤] ))
69 fveq2 6891 . . . . . . . . . 10 (𝑧 = [𝑤] → (𝐹𝑧) = (𝐹‘[𝑤] ))
7069rspceeqv 3633 . . . . . . . . 9 (([𝑤] ∈ (𝑋 / ) ∧ (𝑤 𝐴) = (𝐹‘[𝑤] )) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
7167, 68, 70syl2an2 684 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
72 eqeq1 2736 . . . . . . . . 9 ((𝑤 𝐴) = → ((𝑤 𝐴) = (𝐹𝑧) ↔ = (𝐹𝑧)))
7372rexbidv 3178 . . . . . . . 8 ((𝑤 𝐴) = → (∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧) ↔ ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7471, 73syl5ibcom 244 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ((𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7574rexlimdva 3155 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (∃𝑤𝑋 (𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7675imp 407 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∃𝑤𝑋 (𝑤 𝐴) = ) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7765, 76syldan 591 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7877ralrimiva 3146 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
79 dffo3 7103 . . 3 (𝐹:(𝑋 / )–onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
8031, 78, 79sylanbrc 583 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–onto→[𝐴]𝑂)
81 df-f1o 6550 . 2 (𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )–1-1→[𝐴]𝑂𝐹:(𝑋 / )–onto→[𝐴]𝑂))
8258, 80, 81sylanbrc 583 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  wss 3948  {cpr 4630  cop 4634   class class class wbr 5148  {copab 5210  cmpt 5231   × cxp 5674  ran crn 5677  Fun wfun 6537  wf 6539  1-1wf1 6540  ontowfo 6541  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7411   Er wer 8702  [cec 8703   / cqs 8704  Basecbs 17148  SubGrpcsubg 19036   ~QG cqg 19038   GrpAct cga 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-subg 19039  df-eqg 19041  df-ga 19195
This theorem is referenced by:  orbsta2  19219
  Copyright terms: Public domain W3C validator