Step | Hyp | Ref
| Expression |
1 | | gasta.1 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
2 | | gasta.2 |
. . . . 5
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
3 | | orbsta.r |
. . . . 5
⊢ ∼ =
(𝐺 ~QG
𝐻) |
4 | | orbsta.f |
. . . . 5
⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) |
5 | 1, 2, 3, 4 | orbstafun 18832 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) |
6 | | simpr 484 |
. . . . . . . 8
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ 𝑌) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
8 | 1 | gaf 18816 |
. . . . . . . . . 10
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
9 | 8 | adantr 480 |
. . . . . . . . 9
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
10 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
11 | | simpr 484 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
12 | 10, 11, 7 | fovrnd 7422 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑘 ⊕ 𝐴) ∈ 𝑌) |
13 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ⊕ 𝐴) = (𝑘 ⊕ 𝐴) |
14 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (ℎ = 𝑘 → (ℎ ⊕ 𝐴) = (𝑘 ⊕ 𝐴)) |
15 | 14 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (ℎ = 𝑘 → ((ℎ ⊕ 𝐴) = (𝑘 ⊕ 𝐴) ↔ (𝑘 ⊕ 𝐴) = (𝑘 ⊕ 𝐴))) |
16 | 15 | rspcev 3552 |
. . . . . . . 8
⊢ ((𝑘 ∈ 𝑋 ∧ (𝑘 ⊕ 𝐴) = (𝑘 ⊕ 𝐴)) → ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = (𝑘 ⊕ 𝐴)) |
17 | 11, 13, 16 | sylancl 585 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = (𝑘 ⊕ 𝐴)) |
18 | | orbsta.o |
. . . . . . . 8
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
19 | 18 | gaorb 18828 |
. . . . . . 7
⊢ (𝐴𝑂(𝑘 ⊕ 𝐴) ↔ (𝐴 ∈ 𝑌 ∧ (𝑘 ⊕ 𝐴) ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = (𝑘 ⊕ 𝐴))) |
20 | 7, 12, 17, 19 | syl3anbrc 1341 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → 𝐴𝑂(𝑘 ⊕ 𝐴)) |
21 | | ovex 7288 |
. . . . . . 7
⊢ (𝑘 ⊕ 𝐴) ∈ V |
22 | | elecg 8499 |
. . . . . . 7
⊢ (((𝑘 ⊕ 𝐴) ∈ V ∧ 𝐴 ∈ 𝑌) → ((𝑘 ⊕ 𝐴) ∈ [𝐴]𝑂 ↔ 𝐴𝑂(𝑘 ⊕ 𝐴))) |
23 | 21, 7, 22 | sylancr 586 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → ((𝑘 ⊕ 𝐴) ∈ [𝐴]𝑂 ↔ 𝐴𝑂(𝑘 ⊕ 𝐴))) |
24 | 20, 23 | mpbird 256 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑘 ⊕ 𝐴) ∈ [𝐴]𝑂) |
25 | 1, 2 | gastacl 18830 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |
26 | 1, 3 | eqger 18721 |
. . . . . 6
⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∼ Er 𝑋) |
28 | 1 | fvexi 6770 |
. . . . . 6
⊢ 𝑋 ∈ V |
29 | 28 | a1i 11 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝑋 ∈ V) |
30 | 4, 24, 27, 29 | qliftf 8552 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (Fun 𝐹 ↔ 𝐹:(𝑋 / ∼ )⟶[𝐴]𝑂)) |
31 | 5, 30 | mpbid 231 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐹:(𝑋 / ∼ )⟶[𝐴]𝑂) |
32 | | eqid 2738 |
. . . . 5
⊢ (𝑋 / ∼ ) = (𝑋 / ∼ ) |
33 | | fveqeq2 6765 |
. . . . . . 7
⊢ ([𝑧] ∼ = 𝑎 → ((𝐹‘[𝑧] ∼ ) = (𝐹‘𝑏) ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
34 | | eqeq1 2742 |
. . . . . . 7
⊢ ([𝑧] ∼ = 𝑎 → ([𝑧] ∼ = 𝑏 ↔ 𝑎 = 𝑏)) |
35 | 33, 34 | imbi12d 344 |
. . . . . 6
⊢ ([𝑧] ∼ = 𝑎 → (((𝐹‘[𝑧] ∼ ) = (𝐹‘𝑏) → [𝑧] ∼ = 𝑏) ↔ ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) |
36 | 35 | ralbidv 3120 |
. . . . 5
⊢ ([𝑧] ∼ = 𝑎 → (∀𝑏 ∈ (𝑋 / ∼ )((𝐹‘[𝑧] ∼ ) = (𝐹‘𝑏) → [𝑧] ∼ = 𝑏) ↔ ∀𝑏 ∈ (𝑋 / ∼ )((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) |
37 | | fveq2 6756 |
. . . . . . . . 9
⊢ ([𝑤] ∼ = 𝑏 → (𝐹‘[𝑤] ∼ ) = (𝐹‘𝑏)) |
38 | 37 | eqeq2d 2749 |
. . . . . . . 8
⊢ ([𝑤] ∼ = 𝑏 → ((𝐹‘[𝑧] ∼ ) = (𝐹‘[𝑤] ∼ ) ↔ (𝐹‘[𝑧] ∼ ) = (𝐹‘𝑏))) |
39 | | eqeq2 2750 |
. . . . . . . 8
⊢ ([𝑤] ∼ = 𝑏 → ([𝑧] ∼ = [𝑤] ∼ ↔ [𝑧] ∼ = 𝑏)) |
40 | 38, 39 | imbi12d 344 |
. . . . . . 7
⊢ ([𝑤] ∼ = 𝑏 → (((𝐹‘[𝑧] ∼ ) = (𝐹‘[𝑤] ∼ ) → [𝑧] ∼ = [𝑤] ∼ ) ↔ ((𝐹‘[𝑧] ∼ ) = (𝐹‘𝑏) → [𝑧] ∼ = 𝑏))) |
41 | 1, 2, 3, 4 | orbstaval 18833 |
. . . . . . . . . . . 12
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝐹‘[𝑧] ∼ ) = (𝑧 ⊕ 𝐴)) |
42 | 41 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘[𝑧] ∼ ) = (𝑧 ⊕ 𝐴)) |
43 | 1, 2, 3, 4 | orbstaval 18833 |
. . . . . . . . . . . 12
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑤 ∈ 𝑋) → (𝐹‘[𝑤] ∼ ) = (𝑤 ⊕ 𝐴)) |
44 | 43 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘[𝑤] ∼ ) = (𝑤 ⊕ 𝐴)) |
45 | 42, 44 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘[𝑧] ∼ ) = (𝐹‘[𝑤] ∼ ) ↔ (𝑧 ⊕ 𝐴) = (𝑤 ⊕ 𝐴))) |
46 | 1, 2, 3 | gastacos 18831 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑧 ∼ 𝑤 ↔ (𝑧 ⊕ 𝐴) = (𝑤 ⊕ 𝐴))) |
47 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ∼ Er 𝑋) |
48 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
49 | 47, 48 | erth 8505 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑧 ∼ 𝑤 ↔ [𝑧] ∼ = [𝑤] ∼ )) |
50 | 45, 46, 49 | 3bitr2d 306 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘[𝑧] ∼ ) = (𝐹‘[𝑤] ∼ ) ↔ [𝑧] ∼ = [𝑤] ∼ )) |
51 | 50 | biimpd 228 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘[𝑧] ∼ ) = (𝐹‘[𝑤] ∼ ) → [𝑧] ∼ = [𝑤] ∼ )) |
52 | 51 | anassrs 467 |
. . . . . . 7
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((𝐹‘[𝑧] ∼ ) = (𝐹‘[𝑤] ∼ ) → [𝑧] ∼ = [𝑤] ∼ )) |
53 | 32, 40, 52 | ectocld 8531 |
. . . . . 6
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) ∧ 𝑏 ∈ (𝑋 / ∼ )) → ((𝐹‘[𝑧] ∼ ) = (𝐹‘𝑏) → [𝑧] ∼ = 𝑏)) |
54 | 53 | ralrimiva 3107 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ∀𝑏 ∈ (𝑋 / ∼ )((𝐹‘[𝑧] ∼ ) = (𝐹‘𝑏) → [𝑧] ∼ = 𝑏)) |
55 | 32, 36, 54 | ectocld 8531 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑎 ∈ (𝑋 / ∼ )) →
∀𝑏 ∈ (𝑋 / ∼ )((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
56 | 55 | ralrimiva 3107 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∀𝑎 ∈ (𝑋 / ∼ )∀𝑏 ∈ (𝑋 / ∼ )((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
57 | | dff13 7109 |
. . 3
⊢ (𝐹:(𝑋 / ∼ )–1-1→[𝐴]𝑂 ↔ (𝐹:(𝑋 / ∼ )⟶[𝐴]𝑂 ∧ ∀𝑎 ∈ (𝑋 / ∼ )∀𝑏 ∈ (𝑋 / ∼ )((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) |
58 | 31, 56, 57 | sylanbrc 582 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐹:(𝑋 / ∼ )–1-1→[𝐴]𝑂) |
59 | | vex 3426 |
. . . . . . . . 9
⊢ ℎ ∈ V |
60 | | elecg 8499 |
. . . . . . . . 9
⊢ ((ℎ ∈ V ∧ 𝐴 ∈ 𝑌) → (ℎ ∈ [𝐴]𝑂 ↔ 𝐴𝑂ℎ)) |
61 | 59, 6, 60 | sylancr 586 |
. . . . . . . 8
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (ℎ ∈ [𝐴]𝑂 ↔ 𝐴𝑂ℎ)) |
62 | 18 | gaorb 18828 |
. . . . . . . 8
⊢ (𝐴𝑂ℎ ↔ (𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃𝑤 ∈ 𝑋 (𝑤 ⊕ 𝐴) = ℎ)) |
63 | 61, 62 | bitrdi 286 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (ℎ ∈ [𝐴]𝑂 ↔ (𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃𝑤 ∈ 𝑋 (𝑤 ⊕ 𝐴) = ℎ))) |
64 | 63 | biimpa 476 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ ℎ ∈ [𝐴]𝑂) → (𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃𝑤 ∈ 𝑋 (𝑤 ⊕ 𝐴) = ℎ)) |
65 | 64 | simp3d 1142 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ ℎ ∈ [𝐴]𝑂) → ∃𝑤 ∈ 𝑋 (𝑤 ⊕ 𝐴) = ℎ) |
66 | 3 | ovexi 7289 |
. . . . . . . . . 10
⊢ ∼ ∈
V |
67 | 66 | ecelqsi 8520 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑋 → [𝑤] ∼ ∈ (𝑋 / ∼ )) |
68 | 43 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑤 ∈ 𝑋) → (𝑤 ⊕ 𝐴) = (𝐹‘[𝑤] ∼ )) |
69 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑧 = [𝑤] ∼ → (𝐹‘𝑧) = (𝐹‘[𝑤] ∼ )) |
70 | 69 | rspceeqv 3567 |
. . . . . . . . 9
⊢ (([𝑤] ∼ ∈ (𝑋 / ∼ ) ∧ (𝑤 ⊕ 𝐴) = (𝐹‘[𝑤] ∼ )) →
∃𝑧 ∈ (𝑋 / ∼ )(𝑤 ⊕ 𝐴) = (𝐹‘𝑧)) |
71 | 67, 68, 70 | syl2an2 682 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑤 ∈ 𝑋) → ∃𝑧 ∈ (𝑋 / ∼ )(𝑤 ⊕ 𝐴) = (𝐹‘𝑧)) |
72 | | eqeq1 2742 |
. . . . . . . . 9
⊢ ((𝑤 ⊕ 𝐴) = ℎ → ((𝑤 ⊕ 𝐴) = (𝐹‘𝑧) ↔ ℎ = (𝐹‘𝑧))) |
73 | 72 | rexbidv 3225 |
. . . . . . . 8
⊢ ((𝑤 ⊕ 𝐴) = ℎ → (∃𝑧 ∈ (𝑋 / ∼ )(𝑤 ⊕ 𝐴) = (𝐹‘𝑧) ↔ ∃𝑧 ∈ (𝑋 / ∼ )ℎ = (𝐹‘𝑧))) |
74 | 71, 73 | syl5ibcom 244 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑤 ∈ 𝑋) → ((𝑤 ⊕ 𝐴) = ℎ → ∃𝑧 ∈ (𝑋 / ∼ )ℎ = (𝐹‘𝑧))) |
75 | 74 | rexlimdva 3212 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (∃𝑤 ∈ 𝑋 (𝑤 ⊕ 𝐴) = ℎ → ∃𝑧 ∈ (𝑋 / ∼ )ℎ = (𝐹‘𝑧))) |
76 | 75 | imp 406 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ ∃𝑤 ∈ 𝑋 (𝑤 ⊕ 𝐴) = ℎ) → ∃𝑧 ∈ (𝑋 / ∼ )ℎ = (𝐹‘𝑧)) |
77 | 65, 76 | syldan 590 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ ℎ ∈ [𝐴]𝑂) → ∃𝑧 ∈ (𝑋 / ∼ )ℎ = (𝐹‘𝑧)) |
78 | 77 | ralrimiva 3107 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∀ℎ ∈ [ 𝐴]𝑂∃𝑧 ∈ (𝑋 / ∼ )ℎ = (𝐹‘𝑧)) |
79 | | dffo3 6960 |
. . 3
⊢ (𝐹:(𝑋 / ∼ )–onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / ∼ )⟶[𝐴]𝑂 ∧ ∀ℎ ∈ [ 𝐴]𝑂∃𝑧 ∈ (𝑋 / ∼ )ℎ = (𝐹‘𝑧))) |
80 | 31, 78, 79 | sylanbrc 582 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐹:(𝑋 / ∼ )–onto→[𝐴]𝑂) |
81 | | df-f1o 6425 |
. 2
⊢ (𝐹:(𝑋 / ∼ )–1-1-onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / ∼ )–1-1→[𝐴]𝑂 ∧ 𝐹:(𝑋 / ∼ )–onto→[𝐴]𝑂)) |
82 | 58, 80, 81 | sylanbrc 582 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐹:(𝑋 / ∼ )–1-1-onto→[𝐴]𝑂) |