MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta Structured version   Visualization version   GIF version

Theorem orbsta 19227
Description: The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
orbsta.f 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
orbsta.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Distinct variable groups:   𝑔,𝑘,𝑥,𝑦,   𝑢,𝑔, ,𝑘,𝑥,𝑦   𝑥,𝐻,𝑦   𝐴,𝑔,𝑘,𝑢,𝑥,𝑦   𝑔,𝐺,𝑘,𝑢,𝑥,𝑦   𝑔,𝑋,𝑘,𝑢,𝑥,𝑦   𝑘,𝑂   𝑔,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐹(𝑥,𝑦,𝑢,𝑔,𝑘)   𝐻(𝑢,𝑔,𝑘)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta
Dummy variables 𝑎 𝑏 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.1 . . . . 5 𝑋 = (Base‘𝐺)
2 gasta.2 . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
3 orbsta.r . . . . 5 = (𝐺 ~QG 𝐻)
4 orbsta.f . . . . 5 𝐹 = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
51, 2, 3, 4orbstafun 19225 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
6 simpr 484 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐴𝑌)
76adantr 480 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑌)
81gaf 19209 . . . . . . . . . 10 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
98adantr 480 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → :(𝑋 × 𝑌)⟶𝑌)
109adantr 480 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → :(𝑋 × 𝑌)⟶𝑌)
11 simpr 484 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝑘𝑋)
1210, 11, 7fovcdmd 7524 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ 𝑌)
13 eqid 2733 . . . . . . . 8 (𝑘 𝐴) = (𝑘 𝐴)
14 oveq1 7359 . . . . . . . . . 10 ( = 𝑘 → ( 𝐴) = (𝑘 𝐴))
1514eqeq1d 2735 . . . . . . . . 9 ( = 𝑘 → (( 𝐴) = (𝑘 𝐴) ↔ (𝑘 𝐴) = (𝑘 𝐴)))
1615rspcev 3573 . . . . . . . 8 ((𝑘𝑋 ∧ (𝑘 𝐴) = (𝑘 𝐴)) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
1711, 13, 16sylancl 586 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ∃𝑋 ( 𝐴) = (𝑘 𝐴))
18 orbsta.o . . . . . . . 8 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918gaorb 19221 . . . . . . 7 (𝐴𝑂(𝑘 𝐴) ↔ (𝐴𝑌 ∧ (𝑘 𝐴) ∈ 𝑌 ∧ ∃𝑋 ( 𝐴) = (𝑘 𝐴)))
207, 12, 17, 19syl3anbrc 1344 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → 𝐴𝑂(𝑘 𝐴))
21 ovex 7385 . . . . . . 7 (𝑘 𝐴) ∈ V
22 elecg 8672 . . . . . . 7 (((𝑘 𝐴) ∈ V ∧ 𝐴𝑌) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2321, 7, 22sylancr 587 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → ((𝑘 𝐴) ∈ [𝐴]𝑂𝐴𝑂(𝑘 𝐴)))
2420, 23mpbird 257 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑘𝑋) → (𝑘 𝐴) ∈ [𝐴]𝑂)
251, 2gastacl 19223 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
261, 3eqger 19092 . . . . . 6 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
2725, 26syl 17 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → Er 𝑋)
281fvexi 6842 . . . . . 6 𝑋 ∈ V
2928a1i 11 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝑋 ∈ V)
304, 24, 27, 29qliftf 8735 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (Fun 𝐹𝐹:(𝑋 / )⟶[𝐴]𝑂))
315, 30mpbid 232 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )⟶[𝐴]𝑂)
32 eqid 2733 . . . . 5 (𝑋 / ) = (𝑋 / )
33 fveqeq2 6837 . . . . . . 7 ([𝑧] = 𝑎 → ((𝐹‘[𝑧] ) = (𝐹𝑏) ↔ (𝐹𝑎) = (𝐹𝑏)))
34 eqeq1 2737 . . . . . . 7 ([𝑧] = 𝑎 → ([𝑧] = 𝑏𝑎 = 𝑏))
3533, 34imbi12d 344 . . . . . 6 ([𝑧] = 𝑎 → (((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
3635ralbidv 3156 . . . . 5 ([𝑧] = 𝑎 → (∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏) ↔ ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
37 fveq2 6828 . . . . . . . . 9 ([𝑤] = 𝑏 → (𝐹‘[𝑤] ) = (𝐹𝑏))
3837eqeq2d 2744 . . . . . . . 8 ([𝑤] = 𝑏 → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝐹‘[𝑧] ) = (𝐹𝑏)))
39 eqeq2 2745 . . . . . . . 8 ([𝑤] = 𝑏 → ([𝑧] = [𝑤] ↔ [𝑧] = 𝑏))
4038, 39imbi12d 344 . . . . . . 7 ([𝑤] = 𝑏 → (((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ) ↔ ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏)))
411, 2, 3, 4orbstaval 19226 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
4241adantrr 717 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑧] ) = (𝑧 𝐴))
431, 2, 3, 4orbstaval 19226 . . . . . . . . . . . 12 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4443adantrl 716 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘[𝑤] ) = (𝑤 𝐴))
4542, 44eqeq12d 2749 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ (𝑧 𝐴) = (𝑤 𝐴)))
461, 2, 3gastacos 19224 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ (𝑧 𝐴) = (𝑤 𝐴)))
4727adantr 480 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → Er 𝑋)
48 simprl 770 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
4947, 48erth 8682 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧 𝑤 ↔ [𝑧] = [𝑤] ))
5045, 46, 493bitr2d 307 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) ↔ [𝑧] = [𝑤] ))
5150biimpd 229 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5251anassrs 467 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝐹‘[𝑧] ) = (𝐹‘[𝑤] ) → [𝑧] = [𝑤] ))
5332, 40, 52ectocld 8712 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) ∧ 𝑏 ∈ (𝑋 / )) → ((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5453ralrimiva 3125 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝑋) → ∀𝑏 ∈ (𝑋 / )((𝐹‘[𝑧] ) = (𝐹𝑏) → [𝑧] = 𝑏))
5532, 36, 54ectocld 8712 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑎 ∈ (𝑋 / )) → ∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
5655ralrimiva 3125 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
57 dff13 7194 . . 3 (𝐹:(𝑋 / )–1-1→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀𝑎 ∈ (𝑋 / )∀𝑏 ∈ (𝑋 / )((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
5831, 56, 57sylanbrc 583 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1→[𝐴]𝑂)
59 vex 3441 . . . . . . . . 9 ∈ V
60 elecg 8672 . . . . . . . . 9 (( ∈ V ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6159, 6, 60sylancr 587 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂𝐴𝑂))
6218gaorb 19221 . . . . . . . 8 (𝐴𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6361, 62bitrdi 287 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( ∈ [𝐴]𝑂 ↔ (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = )))
6463biimpa 476 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → (𝐴𝑌𝑌 ∧ ∃𝑤𝑋 (𝑤 𝐴) = ))
6564simp3d 1144 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑤𝑋 (𝑤 𝐴) = )
663ovexi 7386 . . . . . . . . . 10 ∈ V
6766ecelqsi 8700 . . . . . . . . 9 (𝑤𝑋 → [𝑤] ∈ (𝑋 / ))
6843eqcomd 2739 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → (𝑤 𝐴) = (𝐹‘[𝑤] ))
69 fveq2 6828 . . . . . . . . . 10 (𝑧 = [𝑤] → (𝐹𝑧) = (𝐹‘[𝑤] ))
7069rspceeqv 3596 . . . . . . . . 9 (([𝑤] ∈ (𝑋 / ) ∧ (𝑤 𝐴) = (𝐹‘[𝑤] )) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
7167, 68, 70syl2an2 686 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧))
72 eqeq1 2737 . . . . . . . . 9 ((𝑤 𝐴) = → ((𝑤 𝐴) = (𝐹𝑧) ↔ = (𝐹𝑧)))
7372rexbidv 3157 . . . . . . . 8 ((𝑤 𝐴) = → (∃𝑧 ∈ (𝑋 / )(𝑤 𝐴) = (𝐹𝑧) ↔ ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7471, 73syl5ibcom 245 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑤𝑋) → ((𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7574rexlimdva 3134 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (∃𝑤𝑋 (𝑤 𝐴) = → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
7675imp 406 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∃𝑤𝑋 (𝑤 𝐴) = ) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7765, 76syldan 591 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ ∈ [𝐴]𝑂) → ∃𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
7877ralrimiva 3125 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧))
79 dffo3 7041 . . 3 (𝐹:(𝑋 / )–onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )⟶[𝐴]𝑂 ∧ ∀ ∈ [ 𝐴]𝑂𝑧 ∈ (𝑋 / ) = (𝐹𝑧)))
8031, 78, 79sylanbrc 583 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–onto→[𝐴]𝑂)
81 df-f1o 6493 . 2 (𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂 ↔ (𝐹:(𝑋 / )–1-1→[𝐴]𝑂𝐹:(𝑋 / )–onto→[𝐴]𝑂))
8258, 80, 81sylanbrc 583 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐹:(𝑋 / )–1-1-onto→[𝐴]𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  {cpr 4577  cop 4581   class class class wbr 5093  {copab 5155  cmpt 5174   × cxp 5617  ran crn 5620  Fun wfun 6480  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352   Er wer 8625  [cec 8626   / cqs 8627  Basecbs 17122  SubGrpcsubg 19035   ~QG cqg 19037   GrpAct cga 19203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-subg 19038  df-eqg 19040  df-ga 19204
This theorem is referenced by:  orbsta2  19228
  Copyright terms: Public domain W3C validator