MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Structured version   Visualization version   GIF version

Theorem pi1coghm 25107
Description: The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1coghm (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1coghm
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 pi1co.a . . 3 (𝜑𝐴𝑋)
3 pi1co.p . . . 4 𝑃 = (𝐽 π1 𝐴)
43pi1grp 25096 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑃 ∈ Grp)
51, 2, 4syl2anc 584 . 2 (𝜑𝑃 ∈ Grp)
6 pi1co.f . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
7 cntop2 23264 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 17 . . . 4 (𝜑𝐾 ∈ Top)
9 toptopon2 22939 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 218 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
11 pi1co.b . . . 4 (𝜑 → (𝐹𝐴) = 𝐵)
12 cnf2 23272 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋 𝐾)
131, 10, 6, 12syl3anc 1370 . . . . 5 (𝜑𝐹:𝑋 𝐾)
1413, 2ffvelcdmd 7104 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝐾)
1511, 14eqeltrrd 2839 . . 3 (𝜑𝐵 𝐾)
16 pi1co.q . . . 4 𝑄 = (𝐾 π1 𝐵)
1716pi1grp 25096 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐵 𝐾) → 𝑄 ∈ Grp)
1810, 15, 17syl2anc 584 . 2 (𝜑𝑄 ∈ Grp)
19 pi1co.v . . . 4 𝑉 = (Base‘𝑃)
20 pi1co.g . . . 4 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
213, 16, 19, 20, 1, 6, 2, 11pi1cof 25105 . . 3 (𝜑𝐺:𝑉⟶(Base‘𝑄))
2219a1i 11 . . . . . . . 8 (𝜑𝑉 = (Base‘𝑃))
233, 1, 2, 22pi1bas2 25087 . . . . . . 7 (𝜑𝑉 = ( 𝑉 / ( ≃ph𝐽)))
2423eleq2d 2824 . . . . . 6 (𝜑 → (𝑦𝑉𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))))
2524biimpa 476 . . . . 5 ((𝜑𝑦𝑉) → 𝑦 ∈ ( 𝑉 / ( ≃ph𝐽)))
26 eqid 2734 . . . . . 6 ( 𝑉 / ( ≃ph𝐽)) = ( 𝑉 / ( ≃ph𝐽))
27 fvoveq1 7453 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = (𝐺‘(𝑦(+g𝑃)𝑧)))
28 fveq2 6906 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph𝐽)) = (𝐺𝑦))
2928oveq1d 7445 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
3027, 29eqeq12d 2750 . . . . . . 7 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3130ralbidv 3175 . . . . . 6 ([𝑓]( ≃ph𝐽) = 𝑦 → (∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
32 oveq2 7438 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧))
3332fveq2d 6910 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)))
34 fveq2 6906 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘[]( ≃ph𝐽)) = (𝐺𝑧))
3534oveq2d 7446 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
3633, 35eqeq12d 2750 . . . . . . . . 9 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) ↔ (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
373, 1, 2, 22pi1eluni 25088 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 𝑉 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴)))
3837biimpa 476 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴))
3938simp1d 1141 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → 𝑓 ∈ (II Cn 𝐽))
4039adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 ∈ (II Cn 𝐽))
411adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
422adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐴𝑋)
4319a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑉 = (Base‘𝑃))
443, 41, 42, 43pi1eluni 25088 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ( 𝑉 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴)))
4544biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴))
4645simp1d 1141 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ∈ (II Cn 𝐽))
4738simp3d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘1) = 𝐴)
4847adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = 𝐴)
4945simp2d 1142 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘0) = 𝐴)
5048, 49eqtr4d 2777 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = (‘0))
516ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
5240, 46, 50, 51copco 25064 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹 ∘ (𝑓(*𝑝𝐽))) = ((𝐹𝑓)(*𝑝𝐾)(𝐹)))
5352eceq1d 8783 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
5440, 46, 50pcocn 25063 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽))
5540, 46pco0 25060 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = (𝑓‘0))
5638simp2d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘0) = 𝐴)
5756adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘0) = 𝐴)
5855, 57eqtrd 2774 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = 𝐴)
5940, 46pco1 25061 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = (‘1))
6045simp3d 1143 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘1) = 𝐴)
6159, 60eqtrd 2774 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = 𝐴)
621ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
632ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐴𝑋)
6419a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉 = (Base‘𝑃))
653, 62, 63, 64pi1eluni 25088 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽)) ∈ 𝑉 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = 𝐴 ∧ ((𝑓(*𝑝𝐽))‘1) = 𝐴)))
6654, 58, 61, 65mpbir3and 1341 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ 𝑉)
673, 16, 19, 20, 1, 6, 2, 11pi1coval 25106 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
6867adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
6966, 68syldan 591 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
70 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘𝑄)
7110ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
7215ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐵 𝐾)
73 eqid 2734 . . . . . . . . . . . 12 (+g𝑄) = (+g𝑄)
746adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
75 cnco 23289 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑓) ∈ (II Cn 𝐾))
7639, 74, 75syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (II Cn 𝐾))
77 iitopon 24918 . . . . . . . . . . . . . . . . 17 II ∈ (TopOn‘(0[,]1))
78 cnf2 23272 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (II Cn 𝐽)) → 𝑓:(0[,]1)⟶𝑋)
7977, 41, 39, 78mp3an2i 1465 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑓:(0[,]1)⟶𝑋)
80 0elunit 13505 . . . . . . . . . . . . . . . 16 0 ∈ (0[,]1)
81 fvco3 7007 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8279, 80, 81sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8356fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘0)) = (𝐹𝐴))
8411adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹𝐴) = 𝐵)
8582, 83, 843eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = 𝐵)
86 1elunit 13506 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
87 fvco3 7007 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
8879, 86, 87sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
8947fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘1)) = (𝐹𝐴))
9088, 89, 843eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = 𝐵)
9110adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
9215adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐵 𝐾)
93 eqidd 2735 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (Base‘𝑄) = (Base‘𝑄))
9416, 91, 92, 93pi1eluni 25088 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓) ∈ (Base‘𝑄) ↔ ((𝐹𝑓) ∈ (II Cn 𝐾) ∧ ((𝐹𝑓)‘0) = 𝐵 ∧ ((𝐹𝑓)‘1) = 𝐵)))
9576, 85, 90, 94mpbir3and 1341 . . . . . . . . . . . . 13 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
9695adantr 480 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
97 cnco 23289 . . . . . . . . . . . . . 14 (( ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹) ∈ (II Cn 𝐾))
9846, 51, 97syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (II Cn 𝐾))
99 cnf2 23272 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ ∈ (II Cn 𝐽)) → :(0[,]1)⟶𝑋)
10077, 62, 46, 99mp3an2i 1465 . . . . . . . . . . . . . . 15 (((𝜑𝑓 𝑉) ∧ 𝑉) → :(0[,]1)⟶𝑋)
101 fvco3 7007 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹)‘0) = (𝐹‘(‘0)))
102100, 80, 101sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = (𝐹‘(‘0)))
10349fveq2d 6910 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘0)) = (𝐹𝐴))
10411ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝐴) = 𝐵)
105102, 103, 1043eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = 𝐵)
106 fvco3 7007 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹)‘1) = (𝐹‘(‘1)))
107100, 86, 106sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = (𝐹‘(‘1)))
10860fveq2d 6910 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘1)) = (𝐹𝐴))
109107, 108, 1043eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = 𝐵)
110 eqidd 2735 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
11116, 10, 15, 110pi1eluni 25088 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
112111ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
11398, 105, 109, 112mpbir3and 1341 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (Base‘𝑄))
11416, 70, 71, 72, 73, 96, 113pi1addval 25094 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
11553, 69, 1143eqtr4d 2784 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
116 eqid 2734 . . . . . . . . . . . 12 (+g𝑃) = (+g𝑃)
117 simplr 769 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 𝑉)
118 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉)
1193, 19, 62, 63, 116, 117, 118pi1addval 25094 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = [(𝑓(*𝑝𝐽))]( ≃ph𝐽))
120119fveq2d 6910 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)))
1213, 16, 19, 20, 1, 6, 2, 11pi1coval 25106 . . . . . . . . . . . 12 ((𝜑𝑓 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
122121adantr 480 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
1233, 16, 19, 20, 1, 6, 2, 11pi1coval 25106 . . . . . . . . . . . 12 ((𝜑 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
124123adantlr 715 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
125122, 124oveq12d 7448 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
126115, 120, 1253eqtr4d 2784 . . . . . . . . 9 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
12726, 36, 126ectocld 8822 . . . . . . . 8 (((𝜑𝑓 𝑉) ∧ 𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
128127ralrimiva 3143 . . . . . . 7 ((𝜑𝑓 𝑉) → ∀𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))(𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
12923adantr 480 . . . . . . 7 ((𝜑𝑓 𝑉) → 𝑉 = ( 𝑉 / ( ≃ph𝐽)))
130128, 129raleqtrrdv 3327 . . . . . 6 ((𝜑𝑓 𝑉) → ∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
13126, 31, 130ectocld 8822 . . . . 5 ((𝜑𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
13225, 131syldan 591 . . . 4 ((𝜑𝑦𝑉) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
133132ralrimiva 3143 . . 3 (𝜑 → ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
13421, 133jca 511 . 2 (𝜑 → (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
13519, 70, 116, 73isghm 19245 . 2 (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))))
1365, 18, 134, 135syl21anbrc 1343 1 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  cop 4636   cuni 4911  cmpt 5230  ran crn 5689  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  [cec 8741   / cqs 8742  0cc0 11152  1c1 11153  [,]cicc 13386  Basecbs 17244  +gcplusg 17297  Grpcgrp 18963   GrpHom cghm 19242  Topctop 22914  TopOnctopon 22931   Cn ccn 23247  IIcii 24914  phcphtpc 25014  *𝑝cpco 25046   π1 cpi1 25049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-mulg 19098  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-cn 23250  df-cnp 23251  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-ii 24916  df-htpy 25015  df-phtpy 25016  df-phtpc 25037  df-pco 25051  df-om1 25052  df-pi1 25054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator