MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Structured version   Visualization version   GIF version

Theorem pi1coghm 25017
Description: The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1coghm (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1coghm
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 pi1co.a . . 3 (𝜑𝐴𝑋)
3 pi1co.p . . . 4 𝑃 = (𝐽 π1 𝐴)
43pi1grp 25006 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑃 ∈ Grp)
51, 2, 4syl2anc 584 . 2 (𝜑𝑃 ∈ Grp)
6 pi1co.f . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
7 cntop2 23184 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 17 . . . 4 (𝜑𝐾 ∈ Top)
9 toptopon2 22861 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 218 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
11 pi1co.b . . . 4 (𝜑 → (𝐹𝐴) = 𝐵)
12 cnf2 23192 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋 𝐾)
131, 10, 6, 12syl3anc 1373 . . . . 5 (𝜑𝐹:𝑋 𝐾)
1413, 2ffvelcdmd 7080 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝐾)
1511, 14eqeltrrd 2836 . . 3 (𝜑𝐵 𝐾)
16 pi1co.q . . . 4 𝑄 = (𝐾 π1 𝐵)
1716pi1grp 25006 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐵 𝐾) → 𝑄 ∈ Grp)
1810, 15, 17syl2anc 584 . 2 (𝜑𝑄 ∈ Grp)
19 pi1co.v . . . 4 𝑉 = (Base‘𝑃)
20 pi1co.g . . . 4 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
213, 16, 19, 20, 1, 6, 2, 11pi1cof 25015 . . 3 (𝜑𝐺:𝑉⟶(Base‘𝑄))
2219a1i 11 . . . . . . . 8 (𝜑𝑉 = (Base‘𝑃))
233, 1, 2, 22pi1bas2 24997 . . . . . . 7 (𝜑𝑉 = ( 𝑉 / ( ≃ph𝐽)))
2423eleq2d 2821 . . . . . 6 (𝜑 → (𝑦𝑉𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))))
2524biimpa 476 . . . . 5 ((𝜑𝑦𝑉) → 𝑦 ∈ ( 𝑉 / ( ≃ph𝐽)))
26 eqid 2736 . . . . . 6 ( 𝑉 / ( ≃ph𝐽)) = ( 𝑉 / ( ≃ph𝐽))
27 fvoveq1 7433 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = (𝐺‘(𝑦(+g𝑃)𝑧)))
28 fveq2 6881 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph𝐽)) = (𝐺𝑦))
2928oveq1d 7425 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
3027, 29eqeq12d 2752 . . . . . . 7 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3130ralbidv 3164 . . . . . 6 ([𝑓]( ≃ph𝐽) = 𝑦 → (∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
32 oveq2 7418 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧))
3332fveq2d 6885 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)))
34 fveq2 6881 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘[]( ≃ph𝐽)) = (𝐺𝑧))
3534oveq2d 7426 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
3633, 35eqeq12d 2752 . . . . . . . . 9 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) ↔ (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
373, 1, 2, 22pi1eluni 24998 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 𝑉 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴)))
3837biimpa 476 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴))
3938simp1d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → 𝑓 ∈ (II Cn 𝐽))
4039adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 ∈ (II Cn 𝐽))
411adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
422adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐴𝑋)
4319a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑉 = (Base‘𝑃))
443, 41, 42, 43pi1eluni 24998 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ( 𝑉 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴)))
4544biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴))
4645simp1d 1142 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ∈ (II Cn 𝐽))
4738simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘1) = 𝐴)
4847adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = 𝐴)
4945simp2d 1143 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘0) = 𝐴)
5048, 49eqtr4d 2774 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = (‘0))
516ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
5240, 46, 50, 51copco 24974 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹 ∘ (𝑓(*𝑝𝐽))) = ((𝐹𝑓)(*𝑝𝐾)(𝐹)))
5352eceq1d 8764 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
5440, 46, 50pcocn 24973 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽))
5540, 46pco0 24970 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = (𝑓‘0))
5638simp2d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘0) = 𝐴)
5756adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘0) = 𝐴)
5855, 57eqtrd 2771 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = 𝐴)
5940, 46pco1 24971 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = (‘1))
6045simp3d 1144 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘1) = 𝐴)
6159, 60eqtrd 2771 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = 𝐴)
621ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
632ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐴𝑋)
6419a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉 = (Base‘𝑃))
653, 62, 63, 64pi1eluni 24998 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽)) ∈ 𝑉 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = 𝐴 ∧ ((𝑓(*𝑝𝐽))‘1) = 𝐴)))
6654, 58, 61, 65mpbir3and 1343 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ 𝑉)
673, 16, 19, 20, 1, 6, 2, 11pi1coval 25016 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
6867adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
6966, 68syldan 591 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
70 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘𝑄)
7110ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
7215ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐵 𝐾)
73 eqid 2736 . . . . . . . . . . . 12 (+g𝑄) = (+g𝑄)
746adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
75 cnco 23209 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑓) ∈ (II Cn 𝐾))
7639, 74, 75syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (II Cn 𝐾))
77 iitopon 24828 . . . . . . . . . . . . . . . . 17 II ∈ (TopOn‘(0[,]1))
78 cnf2 23192 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (II Cn 𝐽)) → 𝑓:(0[,]1)⟶𝑋)
7977, 41, 39, 78mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑓:(0[,]1)⟶𝑋)
80 0elunit 13491 . . . . . . . . . . . . . . . 16 0 ∈ (0[,]1)
81 fvco3 6983 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8279, 80, 81sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8356fveq2d 6885 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘0)) = (𝐹𝐴))
8411adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹𝐴) = 𝐵)
8582, 83, 843eqtrd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = 𝐵)
86 1elunit 13492 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
87 fvco3 6983 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
8879, 86, 87sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
8947fveq2d 6885 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘1)) = (𝐹𝐴))
9088, 89, 843eqtrd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = 𝐵)
9110adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
9215adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐵 𝐾)
93 eqidd 2737 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (Base‘𝑄) = (Base‘𝑄))
9416, 91, 92, 93pi1eluni 24998 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓) ∈ (Base‘𝑄) ↔ ((𝐹𝑓) ∈ (II Cn 𝐾) ∧ ((𝐹𝑓)‘0) = 𝐵 ∧ ((𝐹𝑓)‘1) = 𝐵)))
9576, 85, 90, 94mpbir3and 1343 . . . . . . . . . . . . 13 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
9695adantr 480 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
97 cnco 23209 . . . . . . . . . . . . . 14 (( ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹) ∈ (II Cn 𝐾))
9846, 51, 97syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (II Cn 𝐾))
99 cnf2 23192 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ ∈ (II Cn 𝐽)) → :(0[,]1)⟶𝑋)
10077, 62, 46, 99mp3an2i 1468 . . . . . . . . . . . . . . 15 (((𝜑𝑓 𝑉) ∧ 𝑉) → :(0[,]1)⟶𝑋)
101 fvco3 6983 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹)‘0) = (𝐹‘(‘0)))
102100, 80, 101sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = (𝐹‘(‘0)))
10349fveq2d 6885 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘0)) = (𝐹𝐴))
10411ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝐴) = 𝐵)
105102, 103, 1043eqtrd 2775 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = 𝐵)
106 fvco3 6983 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹)‘1) = (𝐹‘(‘1)))
107100, 86, 106sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = (𝐹‘(‘1)))
10860fveq2d 6885 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘1)) = (𝐹𝐴))
109107, 108, 1043eqtrd 2775 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = 𝐵)
110 eqidd 2737 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
11116, 10, 15, 110pi1eluni 24998 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
112111ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
11398, 105, 109, 112mpbir3and 1343 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (Base‘𝑄))
11416, 70, 71, 72, 73, 96, 113pi1addval 25004 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
11553, 69, 1143eqtr4d 2781 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
116 eqid 2736 . . . . . . . . . . . 12 (+g𝑃) = (+g𝑃)
117 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 𝑉)
118 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉)
1193, 19, 62, 63, 116, 117, 118pi1addval 25004 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = [(𝑓(*𝑝𝐽))]( ≃ph𝐽))
120119fveq2d 6885 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)))
1213, 16, 19, 20, 1, 6, 2, 11pi1coval 25016 . . . . . . . . . . . 12 ((𝜑𝑓 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
122121adantr 480 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
1233, 16, 19, 20, 1, 6, 2, 11pi1coval 25016 . . . . . . . . . . . 12 ((𝜑 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
124123adantlr 715 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
125122, 124oveq12d 7428 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
126115, 120, 1253eqtr4d 2781 . . . . . . . . 9 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
12726, 36, 126ectocld 8803 . . . . . . . 8 (((𝜑𝑓 𝑉) ∧ 𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
128127ralrimiva 3133 . . . . . . 7 ((𝜑𝑓 𝑉) → ∀𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))(𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
12923adantr 480 . . . . . . 7 ((𝜑𝑓 𝑉) → 𝑉 = ( 𝑉 / ( ≃ph𝐽)))
130128, 129raleqtrrdv 3313 . . . . . 6 ((𝜑𝑓 𝑉) → ∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
13126, 31, 130ectocld 8803 . . . . 5 ((𝜑𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
13225, 131syldan 591 . . . 4 ((𝜑𝑦𝑉) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
133132ralrimiva 3133 . . 3 (𝜑 → ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
13421, 133jca 511 . 2 (𝜑 → (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
13519, 70, 116, 73isghm 19203 . 2 (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))))
1365, 18, 134, 135syl21anbrc 1345 1 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cop 4612   cuni 4888  cmpt 5206  ran crn 5660  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  [cec 8722   / cqs 8723  0cc0 11134  1c1 11135  [,]cicc 13370  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921   GrpHom cghm 19200  Topctop 22836  TopOnctopon 22853   Cn ccn 23167  IIcii 24824  phcphtpc 24924  *𝑝cpco 24956   π1 cpi1 24959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-qus 17528  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-mulg 19056  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-cn 23170  df-cnp 23171  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-ii 24826  df-htpy 24925  df-phtpy 24926  df-phtpc 24947  df-pco 24961  df-om1 24962  df-pi1 24964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator