Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qsdisjALTV | Structured version Visualization version GIF version |
Description: Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.) |
Ref | Expression |
---|---|
qsdisjALTV.1 | ⊢ (𝜑 → EqvRel 𝑅) |
qsdisjALTV.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) |
qsdisjALTV.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) |
Ref | Expression |
---|---|
qsdisjALTV | ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsdisjALTV.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) | |
2 | eqid 2738 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
3 | eqeq1 2742 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶 ↔ 𝐵 = 𝐶)) | |
4 | ineq1 4136 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
5 | 4 | eqeq1d 2740 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 ∩ 𝐶) = ∅ ↔ (𝐵 ∩ 𝐶) = ∅)) |
6 | 3, 5 | orbi12d 915 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅))) |
7 | qsdisjALTV.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) | |
8 | eqeq2 2750 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶)) | |
9 | ineq2 4137 | . . . . . . 7 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅 ∩ 𝐶)) | |
10 | 9 | eqeq1d 2740 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
11 | 8, 10 | orbi12d 915 | . . . . 5 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅))) |
12 | qsdisjALTV.1 | . . . . . . 7 ⊢ (𝜑 → EqvRel 𝑅) | |
13 | 12 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → EqvRel 𝑅) |
14 | eqvreldisj 36654 | . . . . . 6 ⊢ ( EqvRel 𝑅 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
16 | 2, 11, 15 | ectocld 8531 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
17 | 7, 16 | mpidan 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
18 | 2, 6, 17 | ectocld 8531 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
19 | 1, 18 | mpdan 683 | 1 ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ∅c0 4253 [cec 8454 / cqs 8455 EqvRel weqvrel 36277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 df-refrel 36557 df-symrel 36585 df-trrel 36615 df-eqvrel 36625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |