Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdisjALTV Structured version   Visualization version   GIF version

Theorem qsdisjALTV 36655
Description: Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.)
Hypotheses
Ref Expression
qsdisjALTV.1 (𝜑 → EqvRel 𝑅)
qsdisjALTV.2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
qsdisjALTV.3 (𝜑𝐶 ∈ (𝐴 / 𝑅))
Assertion
Ref Expression
qsdisjALTV (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))

Proof of Theorem qsdisjALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdisjALTV.2 . 2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
2 eqid 2738 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
3 eqeq1 2742 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶𝐵 = 𝐶))
4 ineq1 4136 . . . . 5 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅𝐶) = (𝐵𝐶))
54eqeq1d 2740 . . . 4 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅𝐶) = ∅ ↔ (𝐵𝐶) = ∅))
63, 5orbi12d 915 . . 3 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅)))
7 qsdisjALTV.3 . . . 4 (𝜑𝐶 ∈ (𝐴 / 𝑅))
8 eqeq2 2750 . . . . . 6 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶))
9 ineq2 4137 . . . . . . 7 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅𝐶))
109eqeq1d 2740 . . . . . 6 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅𝐶) = ∅))
118, 10orbi12d 915 . . . . 5 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅)))
12 qsdisjALTV.1 . . . . . . 7 (𝜑 → EqvRel 𝑅)
1312ad2antrr 722 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → EqvRel 𝑅)
14 eqvreldisj 36654 . . . . . 6 ( EqvRel 𝑅 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
1513, 14syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
162, 11, 15ectocld 8531 . . . 4 (((𝜑𝑥𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
177, 16mpidan 685 . . 3 ((𝜑𝑥𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
182, 6, 17ectocld 8531 . 2 ((𝜑𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
191, 18mpdan 683 1 (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  cin 3882  c0 4253  [cec 8454   / cqs 8455   EqvRel weqvrel 36277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-qs 8462  df-refrel 36557  df-symrel 36585  df-trrel 36615  df-eqvrel 36625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator