Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdisjALTV Structured version   Visualization version   GIF version

Theorem qsdisjALTV 36465
Description: Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.)
Hypotheses
Ref Expression
qsdisjALTV.1 (𝜑 → EqvRel 𝑅)
qsdisjALTV.2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
qsdisjALTV.3 (𝜑𝐶 ∈ (𝐴 / 𝑅))
Assertion
Ref Expression
qsdisjALTV (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))

Proof of Theorem qsdisjALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdisjALTV.2 . 2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
2 eqid 2737 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
3 eqeq1 2741 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶𝐵 = 𝐶))
4 ineq1 4120 . . . . 5 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅𝐶) = (𝐵𝐶))
54eqeq1d 2739 . . . 4 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅𝐶) = ∅ ↔ (𝐵𝐶) = ∅))
63, 5orbi12d 919 . . 3 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅)))
7 qsdisjALTV.3 . . . 4 (𝜑𝐶 ∈ (𝐴 / 𝑅))
8 eqeq2 2749 . . . . . 6 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶))
9 ineq2 4121 . . . . . . 7 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅𝐶))
109eqeq1d 2739 . . . . . 6 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅𝐶) = ∅))
118, 10orbi12d 919 . . . . 5 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅)))
12 qsdisjALTV.1 . . . . . . 7 (𝜑 → EqvRel 𝑅)
1312ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → EqvRel 𝑅)
14 eqvreldisj 36464 . . . . . 6 ( EqvRel 𝑅 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
1513, 14syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
162, 11, 15ectocld 8466 . . . 4 (((𝜑𝑥𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
177, 16mpidan 689 . . 3 ((𝜑𝑥𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
182, 6, 17ectocld 8466 . 2 ((𝜑𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
191, 18mpdan 687 1 (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  cin 3865  c0 4237  [cec 8389   / cqs 8390   EqvRel weqvrel 36087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ec 8393  df-qs 8397  df-refrel 36367  df-symrel 36395  df-trrel 36425  df-eqvrel 36435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator