MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsdisj Structured version   Visualization version   GIF version

Theorem qsdisj 8816
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsdisj.1 (𝜑𝑅 Er 𝑋)
qsdisj.2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
qsdisj.3 (𝜑𝐶 ∈ (𝐴 / 𝑅))
Assertion
Ref Expression
qsdisj (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))

Proof of Theorem qsdisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdisj.2 . 2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
2 eqid 2734 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
3 eqeq1 2738 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶𝐵 = 𝐶))
4 ineq1 4193 . . . . 5 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅𝐶) = (𝐵𝐶))
54eqeq1d 2736 . . . 4 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅𝐶) = ∅ ↔ (𝐵𝐶) = ∅))
63, 5orbi12d 918 . . 3 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅)))
7 qsdisj.3 . . . 4 (𝜑𝐶 ∈ (𝐴 / 𝑅))
8 eqeq2 2746 . . . . . 6 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶))
9 ineq2 4194 . . . . . . 7 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅𝐶))
109eqeq1d 2736 . . . . . 6 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅𝐶) = ∅))
118, 10orbi12d 918 . . . . 5 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅)))
12 qsdisj.1 . . . . . . 7 (𝜑𝑅 Er 𝑋)
1312ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → 𝑅 Er 𝑋)
14 erdisj 8781 . . . . . 6 (𝑅 Er 𝑋 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
1513, 14syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
162, 11, 15ectocld 8806 . . . 4 (((𝜑𝑥𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
177, 16mpidan 689 . . 3 ((𝜑𝑥𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
182, 6, 17ectocld 8806 . 2 ((𝜑𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
191, 18mpdan 687 1 (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  cin 3930  c0 4313   Er wer 8724  [cec 8725   / cqs 8726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-er 8727  df-ec 8729  df-qs 8733
This theorem is referenced by:  qsdisj2  8817  uniinqs  8819  cldsubg  24065  erprt  38833
  Copyright terms: Public domain W3C validator