| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsdisj | Structured version Visualization version GIF version | ||
| Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsdisj.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qsdisj.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) |
| qsdisj.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) |
| Ref | Expression |
|---|---|
| qsdisj | ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsdisj.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) | |
| 2 | eqid 2734 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
| 3 | eqeq1 2738 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 4 | ineq1 4193 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 5 | 4 | eqeq1d 2736 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 ∩ 𝐶) = ∅ ↔ (𝐵 ∩ 𝐶) = ∅)) |
| 6 | 3, 5 | orbi12d 918 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅))) |
| 7 | qsdisj.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) | |
| 8 | eqeq2 2746 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶)) | |
| 9 | ineq2 4194 | . . . . . . 7 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅 ∩ 𝐶)) | |
| 10 | 9 | eqeq1d 2736 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
| 11 | 8, 10 | orbi12d 918 | . . . . 5 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅))) |
| 12 | qsdisj.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 13 | 12 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑅 Er 𝑋) |
| 14 | erdisj 8781 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
| 16 | 2, 11, 15 | ectocld 8806 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
| 17 | 7, 16 | mpidan 689 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
| 18 | 2, 6, 17 | ectocld 8806 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
| 19 | 1, 18 | mpdan 687 | 1 ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ∅c0 4313 Er wer 8724 [cec 8725 / cqs 8726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-er 8727 df-ec 8729 df-qs 8733 |
| This theorem is referenced by: qsdisj2 8817 uniinqs 8819 cldsubg 24065 erprt 38833 |
| Copyright terms: Public domain | W3C validator |