![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsdisj | Structured version Visualization version GIF version |
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsdisj.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qsdisj.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) |
qsdisj.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) |
Ref | Expression |
---|---|
qsdisj | ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsdisj.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) | |
2 | eqid 2737 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
3 | eqeq1 2741 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶 ↔ 𝐵 = 𝐶)) | |
4 | ineq1 4224 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
5 | 4 | eqeq1d 2739 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 ∩ 𝐶) = ∅ ↔ (𝐵 ∩ 𝐶) = ∅)) |
6 | 3, 5 | orbi12d 919 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅))) |
7 | qsdisj.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) | |
8 | eqeq2 2749 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶)) | |
9 | ineq2 4225 | . . . . . . 7 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅 ∩ 𝐶)) | |
10 | 9 | eqeq1d 2739 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
11 | 8, 10 | orbi12d 919 | . . . . 5 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅))) |
12 | qsdisj.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
13 | 12 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑅 Er 𝑋) |
14 | erdisj 8807 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
16 | 2, 11, 15 | ectocld 8832 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
17 | 7, 16 | mpidan 689 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
18 | 2, 6, 17 | ectocld 8832 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
19 | 1, 18 | mpdan 687 | 1 ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 ∅c0 4342 Er wer 8750 [cec 8751 / cqs 8752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-er 8753 df-ec 8755 df-qs 8759 |
This theorem is referenced by: qsdisj2 8843 uniinqs 8845 cldsubg 24144 erprt 38869 |
Copyright terms: Public domain | W3C validator |