![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsdisj | Structured version Visualization version GIF version |
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsdisj.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qsdisj.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) |
qsdisj.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) |
Ref | Expression |
---|---|
qsdisj | ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsdisj.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) | |
2 | eqid 2728 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
3 | eqeq1 2732 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶 ↔ 𝐵 = 𝐶)) | |
4 | ineq1 4205 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
5 | 4 | eqeq1d 2730 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 ∩ 𝐶) = ∅ ↔ (𝐵 ∩ 𝐶) = ∅)) |
6 | 3, 5 | orbi12d 917 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅))) |
7 | qsdisj.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) | |
8 | eqeq2 2740 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶)) | |
9 | ineq2 4206 | . . . . . . 7 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅 ∩ 𝐶)) | |
10 | 9 | eqeq1d 2730 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
11 | 8, 10 | orbi12d 917 | . . . . 5 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅))) |
12 | qsdisj.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
13 | 12 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑅 Er 𝑋) |
14 | erdisj 8778 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
16 | 2, 11, 15 | ectocld 8803 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
17 | 7, 16 | mpidan 688 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
18 | 2, 6, 17 | ectocld 8803 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
19 | 1, 18 | mpdan 686 | 1 ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ∅c0 4323 Er wer 8722 [cec 8723 / cqs 8724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-er 8725 df-ec 8727 df-qs 8731 |
This theorem is referenced by: qsdisj2 8814 uniinqs 8816 cldsubg 24028 erprt 38345 |
Copyright terms: Public domain | W3C validator |