![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsdisj | Structured version Visualization version GIF version |
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsdisj.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qsdisj.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) |
qsdisj.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) |
Ref | Expression |
---|---|
qsdisj | ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsdisj.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) | |
2 | eqid 2799 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
3 | eqeq1 2803 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶 ↔ 𝐵 = 𝐶)) | |
4 | ineq1 4005 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
5 | 4 | eqeq1d 2801 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 ∩ 𝐶) = ∅ ↔ (𝐵 ∩ 𝐶) = ∅)) |
6 | 3, 5 | orbi12d 943 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅))) |
7 | qsdisj.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) | |
8 | eqeq2 2810 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶)) | |
9 | ineq2 4006 | . . . . . . 7 ⊢ ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅 ∩ 𝐶)) | |
10 | 9 | eqeq1d 2801 | . . . . . 6 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
11 | 8, 10 | orbi12d 943 | . . . . 5 ⊢ ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅))) |
12 | qsdisj.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
13 | 12 | ad2antrr 718 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑅 Er 𝑋) |
14 | erdisj 8032 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅)) |
16 | 2, 11, 15 | ectocld 8052 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
17 | 7, 16 | mpidan 681 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅 ∩ 𝐶) = ∅)) |
18 | 2, 6, 17 | ectocld 8052 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
19 | 1, 18 | mpdan 679 | 1 ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ∩ cin 3768 ∅c0 4115 Er wer 7979 [cec 7980 / cqs 7981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-er 7982 df-ec 7984 df-qs 7988 |
This theorem is referenced by: qsdisj2 8063 uniinqs 8065 cldsubg 22242 erprt 34894 |
Copyright terms: Public domain | W3C validator |