MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem2 Structured version   Visualization version   GIF version

Theorem sylow2alem2 19480
Description: Lemma for sylow2a 19481. All the orbits which are not for fixed points have size ∣ 𝐺 ∣ / ∣ 𝐺π‘₯ ∣ (where 𝐺π‘₯ is the stabilizer subgroup) and thus are powers of 𝑃. And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide 𝑃, and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Baseβ€˜πΊ)
sylow2a.m (πœ‘ β†’ βŠ• ∈ (𝐺 GrpAct π‘Œ))
sylow2a.p (πœ‘ β†’ 𝑃 pGrp 𝐺)
sylow2a.f (πœ‘ β†’ 𝑋 ∈ Fin)
sylow2a.y (πœ‘ β†’ π‘Œ ∈ Fin)
sylow2a.z 𝑍 = {𝑒 ∈ π‘Œ ∣ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑒) = 𝑒}
sylow2a.r ∼ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† π‘Œ ∧ βˆƒπ‘” ∈ 𝑋 (𝑔 βŠ• π‘₯) = 𝑦)}
Assertion
Ref Expression
sylow2alem2 (πœ‘ β†’ 𝑃 βˆ₯ Σ𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍)(β™―β€˜π‘§))
Distinct variable groups:   𝑧,β„Ž, ∼   𝑔,β„Ž,𝑒,π‘₯,𝑦   𝑔,𝐺,π‘₯,𝑦   𝑧,𝑃   βŠ• ,𝑔,β„Ž,𝑒,π‘₯,𝑦   𝑔,𝑋,β„Ž,𝑒,π‘₯,𝑦   𝑧,𝑍   πœ‘,β„Ž,𝑧   𝑧,𝑔,π‘Œ,β„Ž,𝑒,π‘₯,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑒,𝑔)   𝑃(π‘₯,𝑦,𝑒,𝑔,β„Ž)   βŠ• (𝑧)   ∼ (π‘₯,𝑦,𝑒,𝑔)   𝐺(𝑧,𝑒,β„Ž)   𝑋(𝑧)   𝑍(π‘₯,𝑦,𝑒,𝑔,β„Ž)

Proof of Theorem sylow2alem2
Dummy variables π‘˜ 𝑛 𝑀 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.y . . . . 5 (πœ‘ β†’ π‘Œ ∈ Fin)
2 pwfi 9174 . . . . 5 (π‘Œ ∈ Fin ↔ 𝒫 π‘Œ ∈ Fin)
31, 2sylib 217 . . . 4 (πœ‘ β†’ 𝒫 π‘Œ ∈ Fin)
4 sylow2a.m . . . . . 6 (πœ‘ β†’ βŠ• ∈ (𝐺 GrpAct π‘Œ))
5 sylow2a.r . . . . . . 7 ∼ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† π‘Œ ∧ βˆƒπ‘” ∈ 𝑋 (𝑔 βŠ• π‘₯) = 𝑦)}
6 sylow2a.x . . . . . . 7 𝑋 = (Baseβ€˜πΊ)
75, 6gaorber 19166 . . . . . 6 ( βŠ• ∈ (𝐺 GrpAct π‘Œ) β†’ ∼ Er π‘Œ)
84, 7syl 17 . . . . 5 (πœ‘ β†’ ∼ Er π‘Œ)
98qsss 8768 . . . 4 (πœ‘ β†’ (π‘Œ / ∼ ) βŠ† 𝒫 π‘Œ)
103, 9ssfid 9263 . . 3 (πœ‘ β†’ (π‘Œ / ∼ ) ∈ Fin)
11 diffi 9175 . . 3 ((π‘Œ / ∼ ) ∈ Fin β†’ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍) ∈ Fin)
1210, 11syl 17 . 2 (πœ‘ β†’ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍) ∈ Fin)
13 sylow2a.p . . . . 5 (πœ‘ β†’ 𝑃 pGrp 𝐺)
14 gagrp 19150 . . . . . . 7 ( βŠ• ∈ (𝐺 GrpAct π‘Œ) β†’ 𝐺 ∈ Grp)
154, 14syl 17 . . . . . 6 (πœ‘ β†’ 𝐺 ∈ Grp)
16 sylow2a.f . . . . . 6 (πœ‘ β†’ 𝑋 ∈ Fin)
176pgpfi 19467 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) β†’ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ β„™ ∧ βˆƒπ‘› ∈ β„•0 (β™―β€˜π‘‹) = (𝑃↑𝑛))))
1815, 16, 17syl2anc 584 . . . . 5 (πœ‘ β†’ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ β„™ ∧ βˆƒπ‘› ∈ β„•0 (β™―β€˜π‘‹) = (𝑃↑𝑛))))
1913, 18mpbid 231 . . . 4 (πœ‘ β†’ (𝑃 ∈ β„™ ∧ βˆƒπ‘› ∈ β„•0 (β™―β€˜π‘‹) = (𝑃↑𝑛)))
2019simpld 495 . . 3 (πœ‘ β†’ 𝑃 ∈ β„™)
21 prmz 16608 . . 3 (𝑃 ∈ β„™ β†’ 𝑃 ∈ β„€)
2220, 21syl 17 . 2 (πœ‘ β†’ 𝑃 ∈ β„€)
23 eldifi 4125 . . . . 5 (𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍) β†’ 𝑧 ∈ (π‘Œ / ∼ ))
241adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (π‘Œ / ∼ )) β†’ π‘Œ ∈ Fin)
259sselda 3981 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (π‘Œ / ∼ )) β†’ 𝑧 ∈ 𝒫 π‘Œ)
2625elpwid 4610 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (π‘Œ / ∼ )) β†’ 𝑧 βŠ† π‘Œ)
2724, 26ssfid 9263 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (π‘Œ / ∼ )) β†’ 𝑧 ∈ Fin)
2823, 27sylan2 593 . . . 4 ((πœ‘ ∧ 𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍)) β†’ 𝑧 ∈ Fin)
29 hashcl 14312 . . . 4 (𝑧 ∈ Fin β†’ (β™―β€˜π‘§) ∈ β„•0)
3028, 29syl 17 . . 3 ((πœ‘ ∧ 𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍)) β†’ (β™―β€˜π‘§) ∈ β„•0)
3130nn0zd 12580 . 2 ((πœ‘ ∧ 𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍)) β†’ (β™―β€˜π‘§) ∈ β„€)
32 eldif 3957 . . 3 (𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍) ↔ (𝑧 ∈ (π‘Œ / ∼ ) ∧ Β¬ 𝑧 ∈ 𝒫 𝑍))
33 eqid 2732 . . . . 5 (π‘Œ / ∼ ) = (π‘Œ / ∼ )
34 sseq1 4006 . . . . . . . 8 ([𝑀] ∼ = 𝑧 β†’ ([𝑀] ∼ βŠ† 𝑍 ↔ 𝑧 βŠ† 𝑍))
35 velpw 4606 . . . . . . . 8 (𝑧 ∈ 𝒫 𝑍 ↔ 𝑧 βŠ† 𝑍)
3634, 35bitr4di 288 . . . . . . 7 ([𝑀] ∼ = 𝑧 β†’ ([𝑀] ∼ βŠ† 𝑍 ↔ 𝑧 ∈ 𝒫 𝑍))
3736notbid 317 . . . . . 6 ([𝑀] ∼ = 𝑧 β†’ (Β¬ [𝑀] ∼ βŠ† 𝑍 ↔ Β¬ 𝑧 ∈ 𝒫 𝑍))
38 fveq2 6888 . . . . . . 7 ([𝑀] ∼ = 𝑧 β†’ (β™―β€˜[𝑀] ∼ ) = (β™―β€˜π‘§))
3938breq2d 5159 . . . . . 6 ([𝑀] ∼ = 𝑧 β†’ (𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ ) ↔ 𝑃 βˆ₯ (β™―β€˜π‘§)))
4037, 39imbi12d 344 . . . . 5 ([𝑀] ∼ = 𝑧 β†’ ((Β¬ [𝑀] ∼ βŠ† 𝑍 β†’ 𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ )) ↔ (Β¬ 𝑧 ∈ 𝒫 𝑍 β†’ 𝑃 βˆ₯ (β™―β€˜π‘§))))
4120adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ 𝑃 ∈ β„™)
428adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ∼ Er π‘Œ)
43 simpr 485 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ 𝑀 ∈ π‘Œ)
4442, 43erref 8719 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ 𝑀 ∼ 𝑀)
45 vex 3478 . . . . . . . . . . . . . 14 𝑀 ∈ V
4645, 45elec 8743 . . . . . . . . . . . . 13 (𝑀 ∈ [𝑀] ∼ ↔ 𝑀 ∼ 𝑀)
4744, 46sylibr 233 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ 𝑀 ∈ [𝑀] ∼ )
4847ne0d 4334 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ [𝑀] ∼ β‰  βˆ…)
498ecss 8745 . . . . . . . . . . . . . 14 (πœ‘ β†’ [𝑀] ∼ βŠ† π‘Œ)
501, 49ssfid 9263 . . . . . . . . . . . . 13 (πœ‘ β†’ [𝑀] ∼ ∈ Fin)
5150adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ [𝑀] ∼ ∈ Fin)
52 hashnncl 14322 . . . . . . . . . . . 12 ([𝑀] ∼ ∈ Fin β†’ ((β™―β€˜[𝑀] ∼ ) ∈ β„• ↔ [𝑀] ∼ β‰  βˆ…))
5351, 52syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((β™―β€˜[𝑀] ∼ ) ∈ β„• ↔ [𝑀] ∼ β‰  βˆ…))
5448, 53mpbird 256 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (β™―β€˜[𝑀] ∼ ) ∈ β„•)
55 pceq0 16800 . . . . . . . . . 10 ((𝑃 ∈ β„™ ∧ (β™―β€˜[𝑀] ∼ ) ∈ β„•) β†’ ((𝑃 pCnt (β™―β€˜[𝑀] ∼ )) = 0 ↔ Β¬ 𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ )))
5641, 54, 55syl2anc 584 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((𝑃 pCnt (β™―β€˜[𝑀] ∼ )) = 0 ↔ Β¬ 𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ )))
57 oveq2 7413 . . . . . . . . . 10 ((𝑃 pCnt (β™―β€˜[𝑀] ∼ )) = 0 β†’ (𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ ))) = (𝑃↑0))
58 hashcl 14312 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑀] ∼ ∈ Fin β†’ (β™―β€˜[𝑀] ∼ ) ∈ β„•0)
5950, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ (β™―β€˜[𝑀] ∼ ) ∈ β„•0)
6059nn0zd 12580 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (β™―β€˜[𝑀] ∼ ) ∈ β„€)
61 ssrab2 4076 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀} βŠ† 𝑋
62 ssfi 9169 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ Fin ∧ {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀} βŠ† 𝑋) β†’ {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀} ∈ Fin)
6316, 61, 62sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀} ∈ Fin)
64 hashcl 14312 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀} ∈ Fin β†’ (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀}) ∈ β„•0)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀}) ∈ β„•0)
6665nn0zd 12580 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀}) ∈ β„€)
67 dvdsmul1 16217 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜[𝑀] ∼ ) ∈ β„€ ∧ (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀}) ∈ β„€) β†’ (β™―β€˜[𝑀] ∼ ) βˆ₯ ((β™―β€˜[𝑀] ∼ ) Β· (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀})))
6860, 66, 67syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (β™―β€˜[𝑀] ∼ ) βˆ₯ ((β™―β€˜[𝑀] ∼ ) Β· (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀})))
6968adantr 481 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (β™―β€˜[𝑀] ∼ ) βˆ₯ ((β™―β€˜[𝑀] ∼ ) Β· (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀})))
704adantr 481 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ βŠ• ∈ (𝐺 GrpAct π‘Œ))
7116adantr 481 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ 𝑋 ∈ Fin)
72 eqid 2732 . . . . . . . . . . . . . . . . . . . 20 {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀} = {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀}
73 eqid 2732 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀}) = (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀})
746, 72, 73, 5orbsta2 19172 . . . . . . . . . . . . . . . . . . 19 ((( βŠ• ∈ (𝐺 GrpAct π‘Œ) ∧ 𝑀 ∈ π‘Œ) ∧ 𝑋 ∈ Fin) β†’ (β™―β€˜π‘‹) = ((β™―β€˜[𝑀] ∼ ) Β· (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀})))
7570, 43, 71, 74syl21anc 836 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (β™―β€˜π‘‹) = ((β™―β€˜[𝑀] ∼ ) Β· (β™―β€˜{𝑣 ∈ 𝑋 ∣ (𝑣 βŠ• 𝑀) = 𝑀})))
7669, 75breqtrrd 5175 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (β™―β€˜[𝑀] ∼ ) βˆ₯ (β™―β€˜π‘‹))
7719simprd 496 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ βˆƒπ‘› ∈ β„•0 (β™―β€˜π‘‹) = (𝑃↑𝑛))
7877adantr 481 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ β„•0 (β™―β€˜π‘‹) = (𝑃↑𝑛))
79 breq2 5151 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜π‘‹) = (𝑃↑𝑛) β†’ ((β™―β€˜[𝑀] ∼ ) βˆ₯ (β™―β€˜π‘‹) ↔ (β™―β€˜[𝑀] ∼ ) βˆ₯ (𝑃↑𝑛)))
8079biimpcd 248 . . . . . . . . . . . . . . . . . 18 ((β™―β€˜[𝑀] ∼ ) βˆ₯ (β™―β€˜π‘‹) β†’ ((β™―β€˜π‘‹) = (𝑃↑𝑛) β†’ (β™―β€˜[𝑀] ∼ ) βˆ₯ (𝑃↑𝑛)))
8180reximdv 3170 . . . . . . . . . . . . . . . . 17 ((β™―β€˜[𝑀] ∼ ) βˆ₯ (β™―β€˜π‘‹) β†’ (βˆƒπ‘› ∈ β„•0 (β™―β€˜π‘‹) = (𝑃↑𝑛) β†’ βˆƒπ‘› ∈ β„•0 (β™―β€˜[𝑀] ∼ ) βˆ₯ (𝑃↑𝑛)))
8276, 78, 81sylc 65 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ β„•0 (β™―β€˜[𝑀] ∼ ) βˆ₯ (𝑃↑𝑛))
83 pcprmpw2 16811 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ β„™ ∧ (β™―β€˜[𝑀] ∼ ) ∈ β„•) β†’ (βˆƒπ‘› ∈ β„•0 (β™―β€˜[𝑀] ∼ ) βˆ₯ (𝑃↑𝑛) ↔ (β™―β€˜[𝑀] ∼ ) = (𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ )))))
8441, 54, 83syl2anc 584 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (βˆƒπ‘› ∈ β„•0 (β™―β€˜[𝑀] ∼ ) βˆ₯ (𝑃↑𝑛) ↔ (β™―β€˜[𝑀] ∼ ) = (𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ )))))
8582, 84mpbid 231 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (β™―β€˜[𝑀] ∼ ) = (𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ ))))
8685eqcomd 2738 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ ))) = (β™―β€˜[𝑀] ∼ ))
8722adantr 481 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ 𝑃 ∈ β„€)
8887zcnd 12663 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ 𝑃 ∈ β„‚)
8988exp0d 14101 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (𝑃↑0) = 1)
90 hash1 14360 . . . . . . . . . . . . . . 15 (β™―β€˜1o) = 1
9189, 90eqtr4di 2790 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (𝑃↑0) = (β™―β€˜1o))
9286, 91eqeq12d 2748 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ ))) = (𝑃↑0) ↔ (β™―β€˜[𝑀] ∼ ) = (β™―β€˜1o)))
93 df1o2 8469 . . . . . . . . . . . . . . 15 1o = {βˆ…}
94 snfi 9040 . . . . . . . . . . . . . . 15 {βˆ…} ∈ Fin
9593, 94eqeltri 2829 . . . . . . . . . . . . . 14 1o ∈ Fin
96 hashen 14303 . . . . . . . . . . . . . 14 (([𝑀] ∼ ∈ Fin ∧ 1o ∈ Fin) β†’ ((β™―β€˜[𝑀] ∼ ) = (β™―β€˜1o) ↔ [𝑀] ∼ β‰ˆ 1o))
9751, 95, 96sylancl 586 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((β™―β€˜[𝑀] ∼ ) = (β™―β€˜1o) ↔ [𝑀] ∼ β‰ˆ 1o))
9892, 97bitrd 278 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ ))) = (𝑃↑0) ↔ [𝑀] ∼ β‰ˆ 1o))
99 en1b 9019 . . . . . . . . . . . 12 ([𝑀] ∼ β‰ˆ 1o ↔ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })
10098, 99bitrdi 286 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ ))) = (𝑃↑0) ↔ [𝑀] ∼ = {βˆͺ [𝑀] ∼ }))
10143adantr 481 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ 𝑀 ∈ π‘Œ)
1024ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ βŠ• ∈ (𝐺 GrpAct π‘Œ))
1036gaf 19153 . . . . . . . . . . . . . . . . . . . 20 ( βŠ• ∈ (𝐺 GrpAct π‘Œ) β†’ βŠ• :(𝑋 Γ— π‘Œ)βŸΆπ‘Œ)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ βŠ• :(𝑋 Γ— π‘Œ)βŸΆπ‘Œ)
105 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ β„Ž ∈ 𝑋)
106104, 105, 101fovcdmd 7575 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ (β„Ž βŠ• 𝑀) ∈ π‘Œ)
107 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (β„Ž βŠ• 𝑀) = (β„Ž βŠ• 𝑀)
108 oveq1 7412 . . . . . . . . . . . . . . . . . . . . 21 (π‘˜ = β„Ž β†’ (π‘˜ βŠ• 𝑀) = (β„Ž βŠ• 𝑀))
109108eqeq1d 2734 . . . . . . . . . . . . . . . . . . . 20 (π‘˜ = β„Ž β†’ ((π‘˜ βŠ• 𝑀) = (β„Ž βŠ• 𝑀) ↔ (β„Ž βŠ• 𝑀) = (β„Ž βŠ• 𝑀)))
110109rspcev 3612 . . . . . . . . . . . . . . . . . . 19 ((β„Ž ∈ 𝑋 ∧ (β„Ž βŠ• 𝑀) = (β„Ž βŠ• 𝑀)) β†’ βˆƒπ‘˜ ∈ 𝑋 (π‘˜ βŠ• 𝑀) = (β„Ž βŠ• 𝑀))
111105, 107, 110sylancl 586 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ βˆƒπ‘˜ ∈ 𝑋 (π‘˜ βŠ• 𝑀) = (β„Ž βŠ• 𝑀))
1125gaorb 19165 . . . . . . . . . . . . . . . . . 18 (𝑀 ∼ (β„Ž βŠ• 𝑀) ↔ (𝑀 ∈ π‘Œ ∧ (β„Ž βŠ• 𝑀) ∈ π‘Œ ∧ βˆƒπ‘˜ ∈ 𝑋 (π‘˜ βŠ• 𝑀) = (β„Ž βŠ• 𝑀)))
113101, 106, 111, 112syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ 𝑀 ∼ (β„Ž βŠ• 𝑀))
114 ovex 7438 . . . . . . . . . . . . . . . . . 18 (β„Ž βŠ• 𝑀) ∈ V
115114, 45elec 8743 . . . . . . . . . . . . . . . . 17 ((β„Ž βŠ• 𝑀) ∈ [𝑀] ∼ ↔ 𝑀 ∼ (β„Ž βŠ• 𝑀))
116113, 115sylibr 233 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ (β„Ž βŠ• 𝑀) ∈ [𝑀] ∼ )
117 simprr 771 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })
118116, 117eleqtrd 2835 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ (β„Ž βŠ• 𝑀) ∈ {βˆͺ [𝑀] ∼ })
119114elsn 4642 . . . . . . . . . . . . . . 15 ((β„Ž βŠ• 𝑀) ∈ {βˆͺ [𝑀] ∼ } ↔ (β„Ž βŠ• 𝑀) = βˆͺ [𝑀] ∼ )
120118, 119sylib 217 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ (β„Ž βŠ• 𝑀) = βˆͺ [𝑀] ∼ )
12147adantr 481 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ 𝑀 ∈ [𝑀] ∼ )
122121, 117eleqtrd 2835 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ 𝑀 ∈ {βˆͺ [𝑀] ∼ })
12345elsn 4642 . . . . . . . . . . . . . . 15 (𝑀 ∈ {βˆͺ [𝑀] ∼ } ↔ 𝑀 = βˆͺ [𝑀] ∼ )
124122, 123sylib 217 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ 𝑀 = βˆͺ [𝑀] ∼ )
125120, 124eqtr4d 2775 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ (β„Ž ∈ 𝑋 ∧ [𝑀] ∼ = {βˆͺ [𝑀] ∼ })) β†’ (β„Ž βŠ• 𝑀) = 𝑀)
126125expr 457 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑀 ∈ π‘Œ) ∧ β„Ž ∈ 𝑋) β†’ ([𝑀] ∼ = {βˆͺ [𝑀] ∼ } β†’ (β„Ž βŠ• 𝑀) = 𝑀))
127126ralrimdva 3154 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ([𝑀] ∼ = {βˆͺ [𝑀] ∼ } β†’ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
128100, 127sylbid 239 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((𝑃↑(𝑃 pCnt (β™―β€˜[𝑀] ∼ ))) = (𝑃↑0) β†’ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
12957, 128syl5 34 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ ((𝑃 pCnt (β™―β€˜[𝑀] ∼ )) = 0 β†’ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
13056, 129sylbird 259 . . . . . . . 8 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (Β¬ 𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ ) β†’ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
131 oveq2 7413 . . . . . . . . . . . . 13 (𝑒 = 𝑀 β†’ (β„Ž βŠ• 𝑒) = (β„Ž βŠ• 𝑀))
132 id 22 . . . . . . . . . . . . 13 (𝑒 = 𝑀 β†’ 𝑒 = 𝑀)
133131, 132eqeq12d 2748 . . . . . . . . . . . 12 (𝑒 = 𝑀 β†’ ((β„Ž βŠ• 𝑒) = 𝑒 ↔ (β„Ž βŠ• 𝑀) = 𝑀))
134133ralbidv 3177 . . . . . . . . . . 11 (𝑒 = 𝑀 β†’ (βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑒) = 𝑒 ↔ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
135 sylow2a.z . . . . . . . . . . 11 𝑍 = {𝑒 ∈ π‘Œ ∣ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑒) = 𝑒}
136134, 135elrab2 3685 . . . . . . . . . 10 (𝑀 ∈ 𝑍 ↔ (𝑀 ∈ π‘Œ ∧ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
137136baib 536 . . . . . . . . 9 (𝑀 ∈ π‘Œ β†’ (𝑀 ∈ 𝑍 ↔ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
138137adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (𝑀 ∈ 𝑍 ↔ βˆ€β„Ž ∈ 𝑋 (β„Ž βŠ• 𝑀) = 𝑀))
139130, 138sylibrd 258 . . . . . . 7 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (Β¬ 𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ ) β†’ 𝑀 ∈ 𝑍))
1406, 4, 13, 16, 1, 135, 5sylow2alem1 19479 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 ∈ 𝑍) β†’ [𝑀] ∼ = {𝑀})
141 simpr 485 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑀 ∈ 𝑍) β†’ 𝑀 ∈ 𝑍)
142141snssd 4811 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 ∈ 𝑍) β†’ {𝑀} βŠ† 𝑍)
143140, 142eqsstrd 4019 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 ∈ 𝑍) β†’ [𝑀] ∼ βŠ† 𝑍)
144143ex 413 . . . . . . . 8 (πœ‘ β†’ (𝑀 ∈ 𝑍 β†’ [𝑀] ∼ βŠ† 𝑍))
145144adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (𝑀 ∈ 𝑍 β†’ [𝑀] ∼ βŠ† 𝑍))
146139, 145syld 47 . . . . . 6 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (Β¬ 𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ ) β†’ [𝑀] ∼ βŠ† 𝑍))
147146con1d 145 . . . . 5 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (Β¬ [𝑀] ∼ βŠ† 𝑍 β†’ 𝑃 βˆ₯ (β™―β€˜[𝑀] ∼ )))
14833, 40, 147ectocld 8774 . . . 4 ((πœ‘ ∧ 𝑧 ∈ (π‘Œ / ∼ )) β†’ (Β¬ 𝑧 ∈ 𝒫 𝑍 β†’ 𝑃 βˆ₯ (β™―β€˜π‘§)))
149148impr 455 . . 3 ((πœ‘ ∧ (𝑧 ∈ (π‘Œ / ∼ ) ∧ Β¬ 𝑧 ∈ 𝒫 𝑍)) β†’ 𝑃 βˆ₯ (β™―β€˜π‘§))
15032, 149sylan2b 594 . 2 ((πœ‘ ∧ 𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍)) β†’ 𝑃 βˆ₯ (β™―β€˜π‘§))
15112, 22, 31, 150fsumdvds 16247 1 (πœ‘ β†’ 𝑃 βˆ₯ Σ𝑧 ∈ ((π‘Œ / ∼ ) βˆ– 𝒫 𝑍)(β™―β€˜π‘§))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3944   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {csn 4627  {cpr 4629  βˆͺ cuni 4907   class class class wbr 5147  {copab 5209   Γ— cxp 5673  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  1oc1o 8455   Er wer 8696  [cec 8697   / cqs 8698   β‰ˆ cen 8932  Fincfn 8935  0cc0 11106  1c1 11107   Β· cmul 11111  β„•cn 12208  β„•0cn0 12468  β„€cz 12554  β†‘cexp 14023  β™―chash 14286  Ξ£csu 15628   βˆ₯ cdvds 16193  β„™cprime 16604   pCnt cpc 16765  Basecbs 17140  Grpcgrp 18815   ~QG cqg 18996   GrpAct cga 19147   pGrp cpgp 19388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-eqg 18999  df-ga 19148  df-od 19390  df-pgp 19392
This theorem is referenced by:  sylow2a  19481
  Copyright terms: Public domain W3C validator