MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem2 Structured version   Visualization version   GIF version

Theorem sylow2alem2 19138
Description: Lemma for sylow2a 19139. All the orbits which are not for fixed points have size 𝐺 ∣ / ∣ 𝐺𝑥 (where 𝐺𝑥 is the stabilizer subgroup) and thus are powers of 𝑃. And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide 𝑃, and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2alem2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
Distinct variable groups:   𝑧,,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   𝑧,𝑃   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝑧,𝑍   𝜑,,𝑧   𝑧,𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑧)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑧,𝑢,)   𝑋(𝑧)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2alem2
Dummy variables 𝑘 𝑛 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.y . . . . 5 (𝜑𝑌 ∈ Fin)
2 pwfi 8923 . . . . 5 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
31, 2sylib 217 . . . 4 (𝜑 → 𝒫 𝑌 ∈ Fin)
4 sylow2a.m . . . . . 6 (𝜑 ∈ (𝐺 GrpAct 𝑌))
5 sylow2a.r . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
6 sylow2a.x . . . . . . 7 𝑋 = (Base‘𝐺)
75, 6gaorber 18829 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
84, 7syl 17 . . . . 5 (𝜑 Er 𝑌)
98qsss 8525 . . . 4 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
103, 9ssfid 8971 . . 3 (𝜑 → (𝑌 / ) ∈ Fin)
11 diffi 8979 . . 3 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
1210, 11syl 17 . 2 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
13 sylow2a.p . . . . 5 (𝜑𝑃 pGrp 𝐺)
14 gagrp 18813 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
154, 14syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
16 sylow2a.f . . . . . 6 (𝜑𝑋 ∈ Fin)
176pgpfi 19125 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
1815, 16, 17syl2anc 583 . . . . 5 (𝜑 → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
1913, 18mpbid 231 . . . 4 (𝜑 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
2019simpld 494 . . 3 (𝜑𝑃 ∈ ℙ)
21 prmz 16308 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2220, 21syl 17 . 2 (𝜑𝑃 ∈ ℤ)
23 eldifi 4057 . . . . 5 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
241adantr 480 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
259sselda 3917 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4541 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 8971 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
2823, 27sylan2 592 . . . 4 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → 𝑧 ∈ Fin)
29 hashcl 13999 . . . 4 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
3028, 29syl 17 . . 3 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℕ0)
3130nn0zd 12353 . 2 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℤ)
32 eldif 3893 . . 3 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍))
33 eqid 2738 . . . . 5 (𝑌 / ) = (𝑌 / )
34 sseq1 3942 . . . . . . . 8 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
35 velpw 4535 . . . . . . . 8 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
3634, 35bitr4di 288 . . . . . . 7 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
3736notbid 317 . . . . . 6 ([𝑤] = 𝑧 → (¬ [𝑤] 𝑍 ↔ ¬ 𝑧 ∈ 𝒫 𝑍))
38 fveq2 6756 . . . . . . 7 ([𝑤] = 𝑧 → (♯‘[𝑤] ) = (♯‘𝑧))
3938breq2d 5082 . . . . . 6 ([𝑤] = 𝑧 → (𝑃 ∥ (♯‘[𝑤] ) ↔ 𝑃 ∥ (♯‘𝑧)))
4037, 39imbi12d 344 . . . . 5 ([𝑤] = 𝑧 → ((¬ [𝑤] 𝑍𝑃 ∥ (♯‘[𝑤] )) ↔ (¬ 𝑧 ∈ 𝒫 𝑍𝑃 ∥ (♯‘𝑧))))
4120adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑌) → 𝑃 ∈ ℙ)
428adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → Er 𝑌)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → 𝑤𝑌)
4442, 43erref 8476 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → 𝑤 𝑤)
45 vex 3426 . . . . . . . . . . . . . 14 𝑤 ∈ V
4645, 45elec 8500 . . . . . . . . . . . . 13 (𝑤 ∈ [𝑤] 𝑤 𝑤)
4744, 46sylibr 233 . . . . . . . . . . . 12 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
4847ne0d 4266 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → [𝑤] ≠ ∅)
498ecss 8502 . . . . . . . . . . . . . 14 (𝜑 → [𝑤] 𝑌)
501, 49ssfid 8971 . . . . . . . . . . . . 13 (𝜑 → [𝑤] ∈ Fin)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤𝑌) → [𝑤] ∈ Fin)
52 hashnncl 14009 . . . . . . . . . . . 12 ([𝑤] ∈ Fin → ((♯‘[𝑤] ) ∈ ℕ ↔ [𝑤] ≠ ∅))
5351, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → ((♯‘[𝑤] ) ∈ ℕ ↔ [𝑤] ≠ ∅))
5448, 53mpbird 256 . . . . . . . . . 10 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) ∈ ℕ)
55 pceq0 16500 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (♯‘[𝑤] ) ∈ ℕ) → ((𝑃 pCnt (♯‘[𝑤] )) = 0 ↔ ¬ 𝑃 ∥ (♯‘[𝑤] )))
5641, 54, 55syl2anc 583 . . . . . . . . 9 ((𝜑𝑤𝑌) → ((𝑃 pCnt (♯‘[𝑤] )) = 0 ↔ ¬ 𝑃 ∥ (♯‘[𝑤] )))
57 oveq2 7263 . . . . . . . . . 10 ((𝑃 pCnt (♯‘[𝑤] )) = 0 → (𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0))
58 hashcl 13999 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑤] ∈ Fin → (♯‘[𝑤] ) ∈ ℕ0)
5950, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘[𝑤] ) ∈ ℕ0)
6059nn0zd 12353 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘[𝑤] ) ∈ ℤ)
61 ssrab2 4009 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ⊆ 𝑋
62 ssfi 8918 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ Fin ∧ {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ⊆ 𝑋) → {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ∈ Fin)
6316, 61, 62sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ∈ Fin)
64 hashcl 13999 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ∈ Fin → (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℕ0)
6665nn0zd 12353 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℤ)
67 dvdsmul1 15915 . . . . . . . . . . . . . . . . . . . 20 (((♯‘[𝑤] ) ∈ ℤ ∧ (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℤ) → (♯‘[𝑤] ) ∥ ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
6860, 66, 67syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘[𝑤] ) ∥ ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
6968adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) ∥ ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
704adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑌) → ∈ (𝐺 GrpAct 𝑌))
7116adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑌) → 𝑋 ∈ Fin)
72 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} = {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}
73 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ~QG {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) = (𝐺 ~QG {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})
746, 72, 73, 5orbsta2 18835 . . . . . . . . . . . . . . . . . . 19 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑤𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
7570, 43, 71, 74syl21anc 834 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑌) → (♯‘𝑋) = ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
7669, 75breqtrrd 5098 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) ∥ (♯‘𝑋))
7719simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))
7877adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))
79 breq2 5074 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑋) = (𝑃𝑛) → ((♯‘[𝑤] ) ∥ (♯‘𝑋) ↔ (♯‘[𝑤] ) ∥ (𝑃𝑛)))
8079biimpcd 248 . . . . . . . . . . . . . . . . . 18 ((♯‘[𝑤] ) ∥ (♯‘𝑋) → ((♯‘𝑋) = (𝑃𝑛) → (♯‘[𝑤] ) ∥ (𝑃𝑛)))
8180reximdv 3201 . . . . . . . . . . . . . . . . 17 ((♯‘[𝑤] ) ∥ (♯‘𝑋) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) → ∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛)))
8276, 78, 81sylc 65 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → ∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛))
83 pcprmpw2 16511 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (♯‘[𝑤] ) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛) ↔ (♯‘[𝑤] ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] )))))
8441, 54, 83syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → (∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛) ↔ (♯‘[𝑤] ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] )))))
8582, 84mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ))))
8685eqcomd 2744 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (♯‘[𝑤] ))
8722adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑃 ∈ ℤ)
8887zcnd 12356 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑃 ∈ ℂ)
8988exp0d 13786 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → (𝑃↑0) = 1)
90 hash1 14047 . . . . . . . . . . . . . . 15 (♯‘1o) = 1
9189, 90eqtr4di 2797 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑃↑0) = (♯‘1o))
9286, 91eqeq12d 2754 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) ↔ (♯‘[𝑤] ) = (♯‘1o)))
93 df1o2 8279 . . . . . . . . . . . . . . 15 1o = {∅}
94 snfi 8788 . . . . . . . . . . . . . . 15 {∅} ∈ Fin
9593, 94eqeltri 2835 . . . . . . . . . . . . . 14 1o ∈ Fin
96 hashen 13989 . . . . . . . . . . . . . 14 (([𝑤] ∈ Fin ∧ 1o ∈ Fin) → ((♯‘[𝑤] ) = (♯‘1o) ↔ [𝑤] ≈ 1o))
9751, 95, 96sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ((♯‘[𝑤] ) = (♯‘1o) ↔ [𝑤] ≈ 1o))
9892, 97bitrd 278 . . . . . . . . . . . 12 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) ↔ [𝑤] ≈ 1o))
99 en1b 8767 . . . . . . . . . . . 12 ([𝑤] ≈ 1o ↔ [𝑤] = { [𝑤] })
10098, 99bitrdi 286 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) ↔ [𝑤] = { [𝑤] }))
10143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤𝑌)
1024ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ∈ (𝐺 GrpAct 𝑌))
1036gaf 18816 . . . . . . . . . . . . . . . . . . . 20 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → :(𝑋 × 𝑌)⟶𝑌)
105 simprl 767 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑋)
106104, 105, 101fovrnd 7422 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) ∈ 𝑌)
107 eqid 2738 . . . . . . . . . . . . . . . . . . 19 ( 𝑤) = ( 𝑤)
108 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = → (𝑘 𝑤) = ( 𝑤))
109108eqeq1d 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → ((𝑘 𝑤) = ( 𝑤) ↔ ( 𝑤) = ( 𝑤)))
110109rspcev 3552 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∧ ( 𝑤) = ( 𝑤)) → ∃𝑘𝑋 (𝑘 𝑤) = ( 𝑤))
111105, 107, 110sylancl 585 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ∃𝑘𝑋 (𝑘 𝑤) = ( 𝑤))
1125gaorb 18828 . . . . . . . . . . . . . . . . . 18 (𝑤 ( 𝑤) ↔ (𝑤𝑌 ∧ ( 𝑤) ∈ 𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑤) = ( 𝑤)))
113101, 106, 111, 112syl3anbrc 1341 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 ( 𝑤))
114 ovex 7288 . . . . . . . . . . . . . . . . . 18 ( 𝑤) ∈ V
115114, 45elec 8500 . . . . . . . . . . . . . . . . 17 (( 𝑤) ∈ [𝑤] 𝑤 ( 𝑤))
116113, 115sylibr 233 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) ∈ [𝑤] )
117 simprr 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → [𝑤] = { [𝑤] })
118116, 117eleqtrd 2841 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) ∈ { [𝑤] })
119114elsn 4573 . . . . . . . . . . . . . . 15 (( 𝑤) ∈ { [𝑤] } ↔ ( 𝑤) = [𝑤] )
120118, 119sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) = [𝑤] )
12147adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 ∈ [𝑤] )
122121, 117eleqtrd 2841 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 ∈ { [𝑤] })
12345elsn 4573 . . . . . . . . . . . . . . 15 (𝑤 ∈ { [𝑤] } ↔ 𝑤 = [𝑤] )
124122, 123sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 = [𝑤] )
125120, 124eqtr4d 2781 . . . . . . . . . . . . 13 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) = 𝑤)
126125expr 456 . . . . . . . . . . . 12 (((𝜑𝑤𝑌) ∧ 𝑋) → ([𝑤] = { [𝑤] } → ( 𝑤) = 𝑤))
127126ralrimdva 3112 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → ([𝑤] = { [𝑤] } → ∀𝑋 ( 𝑤) = 𝑤))
128100, 127sylbid 239 . . . . . . . . . 10 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) → ∀𝑋 ( 𝑤) = 𝑤))
12957, 128syl5 34 . . . . . . . . 9 ((𝜑𝑤𝑌) → ((𝑃 pCnt (♯‘[𝑤] )) = 0 → ∀𝑋 ( 𝑤) = 𝑤))
13056, 129sylbird 259 . . . . . . . 8 ((𝜑𝑤𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ) → ∀𝑋 ( 𝑤) = 𝑤))
131 oveq2 7263 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → ( 𝑢) = ( 𝑤))
132 id 22 . . . . . . . . . . . . 13 (𝑢 = 𝑤𝑢 = 𝑤)
133131, 132eqeq12d 2754 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (( 𝑢) = 𝑢 ↔ ( 𝑤) = 𝑤))
134133ralbidv 3120 . . . . . . . . . . 11 (𝑢 = 𝑤 → (∀𝑋 ( 𝑢) = 𝑢 ↔ ∀𝑋 ( 𝑤) = 𝑤))
135 sylow2a.z . . . . . . . . . . 11 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
136134, 135elrab2 3620 . . . . . . . . . 10 (𝑤𝑍 ↔ (𝑤𝑌 ∧ ∀𝑋 ( 𝑤) = 𝑤))
137136baib 535 . . . . . . . . 9 (𝑤𝑌 → (𝑤𝑍 ↔ ∀𝑋 ( 𝑤) = 𝑤))
138137adantl 481 . . . . . . . 8 ((𝜑𝑤𝑌) → (𝑤𝑍 ↔ ∀𝑋 ( 𝑤) = 𝑤))
139130, 138sylibrd 258 . . . . . . 7 ((𝜑𝑤𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ) → 𝑤𝑍))
1406, 4, 13, 16, 1, 135, 5sylow2alem1 19137 . . . . . . . . . 10 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
141 simpr 484 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → 𝑤𝑍)
142141snssd 4739 . . . . . . . . . 10 ((𝜑𝑤𝑍) → {𝑤} ⊆ 𝑍)
143140, 142eqsstrd 3955 . . . . . . . . 9 ((𝜑𝑤𝑍) → [𝑤] 𝑍)
144143ex 412 . . . . . . . 8 (𝜑 → (𝑤𝑍 → [𝑤] 𝑍))
145144adantr 480 . . . . . . 7 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] 𝑍))
146139, 145syld 47 . . . . . 6 ((𝜑𝑤𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ) → [𝑤] 𝑍))
147146con1d 145 . . . . 5 ((𝜑𝑤𝑌) → (¬ [𝑤] 𝑍𝑃 ∥ (♯‘[𝑤] )))
14833, 40, 147ectocld 8531 . . . 4 ((𝜑𝑧 ∈ (𝑌 / )) → (¬ 𝑧 ∈ 𝒫 𝑍𝑃 ∥ (♯‘𝑧)))
149148impr 454 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) → 𝑃 ∥ (♯‘𝑧))
15032, 149sylan2b 593 . 2 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → 𝑃 ∥ (♯‘𝑧))
15112, 22, 31, 150fsumdvds 15945 1 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  {cpr 4560   cuni 4836   class class class wbr 5070  {copab 5132   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  1oc1o 8260   Er wer 8453  [cec 8454   / cqs 8455  cen 8688  Fincfn 8691  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  0cn0 12163  cz 12249  cexp 13710  chash 13972  Σcsu 15325  cdvds 15891  cprime 16304   pCnt cpc 16465  Basecbs 16840  Grpcgrp 18492   ~QG cqg 18666   GrpAct cga 18810   pGrp cpgp 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-eqg 18669  df-ga 18811  df-od 19051  df-pgp 19053
This theorem is referenced by:  sylow2a  19139
  Copyright terms: Public domain W3C validator