MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem2 Structured version   Visualization version   GIF version

Theorem sylow2alem2 19636
Description: Lemma for sylow2a 19637. All the orbits which are not for fixed points have size 𝐺 ∣ / ∣ 𝐺𝑥 (where 𝐺𝑥 is the stabilizer subgroup) and thus are powers of 𝑃. And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide 𝑃, and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2alem2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
Distinct variable groups:   𝑧,,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   𝑧,𝑃   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝑧,𝑍   𝜑,,𝑧   𝑧,𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑧)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑧,𝑢,)   𝑋(𝑧)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2alem2
Dummy variables 𝑘 𝑛 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.y . . . . 5 (𝜑𝑌 ∈ Fin)
2 pwfi 9357 . . . . 5 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
31, 2sylib 218 . . . 4 (𝜑 → 𝒫 𝑌 ∈ Fin)
4 sylow2a.m . . . . . 6 (𝜑 ∈ (𝐺 GrpAct 𝑌))
5 sylow2a.r . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
6 sylow2a.x . . . . . . 7 𝑋 = (Base‘𝐺)
75, 6gaorber 19326 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
84, 7syl 17 . . . . 5 (𝜑 Er 𝑌)
98qsss 8818 . . . 4 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
103, 9ssfid 9301 . . 3 (𝜑 → (𝑌 / ) ∈ Fin)
11 diffi 9215 . . 3 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
1210, 11syl 17 . 2 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
13 sylow2a.p . . . . 5 (𝜑𝑃 pGrp 𝐺)
14 gagrp 19310 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
154, 14syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
16 sylow2a.f . . . . . 6 (𝜑𝑋 ∈ Fin)
176pgpfi 19623 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
1815, 16, 17syl2anc 584 . . . . 5 (𝜑 → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
1913, 18mpbid 232 . . . 4 (𝜑 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)))
2019simpld 494 . . 3 (𝜑𝑃 ∈ ℙ)
21 prmz 16712 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2220, 21syl 17 . 2 (𝜑𝑃 ∈ ℤ)
23 eldifi 4131 . . . . 5 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
241adantr 480 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
259sselda 3983 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4609 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 9301 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
2823, 27sylan2 593 . . . 4 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → 𝑧 ∈ Fin)
29 hashcl 14395 . . . 4 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
3028, 29syl 17 . . 3 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℕ0)
3130nn0zd 12639 . 2 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℤ)
32 eldif 3961 . . 3 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍))
33 eqid 2737 . . . . 5 (𝑌 / ) = (𝑌 / )
34 sseq1 4009 . . . . . . . 8 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
35 velpw 4605 . . . . . . . 8 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
3634, 35bitr4di 289 . . . . . . 7 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
3736notbid 318 . . . . . 6 ([𝑤] = 𝑧 → (¬ [𝑤] 𝑍 ↔ ¬ 𝑧 ∈ 𝒫 𝑍))
38 fveq2 6906 . . . . . . 7 ([𝑤] = 𝑧 → (♯‘[𝑤] ) = (♯‘𝑧))
3938breq2d 5155 . . . . . 6 ([𝑤] = 𝑧 → (𝑃 ∥ (♯‘[𝑤] ) ↔ 𝑃 ∥ (♯‘𝑧)))
4037, 39imbi12d 344 . . . . 5 ([𝑤] = 𝑧 → ((¬ [𝑤] 𝑍𝑃 ∥ (♯‘[𝑤] )) ↔ (¬ 𝑧 ∈ 𝒫 𝑍𝑃 ∥ (♯‘𝑧))))
4120adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑌) → 𝑃 ∈ ℙ)
428adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → Er 𝑌)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → 𝑤𝑌)
4442, 43erref 8765 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → 𝑤 𝑤)
45 vex 3484 . . . . . . . . . . . . . 14 𝑤 ∈ V
4645, 45elec 8791 . . . . . . . . . . . . 13 (𝑤 ∈ [𝑤] 𝑤 𝑤)
4744, 46sylibr 234 . . . . . . . . . . . 12 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
4847ne0d 4342 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → [𝑤] ≠ ∅)
498ecss 8793 . . . . . . . . . . . . . 14 (𝜑 → [𝑤] 𝑌)
501, 49ssfid 9301 . . . . . . . . . . . . 13 (𝜑 → [𝑤] ∈ Fin)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤𝑌) → [𝑤] ∈ Fin)
52 hashnncl 14405 . . . . . . . . . . . 12 ([𝑤] ∈ Fin → ((♯‘[𝑤] ) ∈ ℕ ↔ [𝑤] ≠ ∅))
5351, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → ((♯‘[𝑤] ) ∈ ℕ ↔ [𝑤] ≠ ∅))
5448, 53mpbird 257 . . . . . . . . . 10 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) ∈ ℕ)
55 pceq0 16909 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (♯‘[𝑤] ) ∈ ℕ) → ((𝑃 pCnt (♯‘[𝑤] )) = 0 ↔ ¬ 𝑃 ∥ (♯‘[𝑤] )))
5641, 54, 55syl2anc 584 . . . . . . . . 9 ((𝜑𝑤𝑌) → ((𝑃 pCnt (♯‘[𝑤] )) = 0 ↔ ¬ 𝑃 ∥ (♯‘[𝑤] )))
57 oveq2 7439 . . . . . . . . . 10 ((𝑃 pCnt (♯‘[𝑤] )) = 0 → (𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0))
58 hashcl 14395 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑤] ∈ Fin → (♯‘[𝑤] ) ∈ ℕ0)
5950, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘[𝑤] ) ∈ ℕ0)
6059nn0zd 12639 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘[𝑤] ) ∈ ℤ)
61 ssrab2 4080 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ⊆ 𝑋
62 ssfi 9213 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ Fin ∧ {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ⊆ 𝑋) → {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ∈ Fin)
6316, 61, 62sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ∈ Fin)
64 hashcl 14395 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} ∈ Fin → (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℕ0)
6665nn0zd 12639 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℤ)
67 dvdsmul1 16315 . . . . . . . . . . . . . . . . . . . 20 (((♯‘[𝑤] ) ∈ ℤ ∧ (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) ∈ ℤ) → (♯‘[𝑤] ) ∥ ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
6860, 66, 67syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘[𝑤] ) ∥ ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
6968adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) ∥ ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
704adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑌) → ∈ (𝐺 GrpAct 𝑌))
7116adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑌) → 𝑋 ∈ Fin)
72 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤} = {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}
73 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ~QG {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤}) = (𝐺 ~QG {𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})
746, 72, 73, 5orbsta2 19332 . . . . . . . . . . . . . . . . . . 19 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑤𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
7570, 43, 71, 74syl21anc 838 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑌) → (♯‘𝑋) = ((♯‘[𝑤] ) · (♯‘{𝑣𝑋 ∣ (𝑣 𝑤) = 𝑤})))
7669, 75breqtrrd 5171 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) ∥ (♯‘𝑋))
7719simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))
7877adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))
79 breq2 5147 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑋) = (𝑃𝑛) → ((♯‘[𝑤] ) ∥ (♯‘𝑋) ↔ (♯‘[𝑤] ) ∥ (𝑃𝑛)))
8079biimpcd 249 . . . . . . . . . . . . . . . . . 18 ((♯‘[𝑤] ) ∥ (♯‘𝑋) → ((♯‘𝑋) = (𝑃𝑛) → (♯‘[𝑤] ) ∥ (𝑃𝑛)))
8180reximdv 3170 . . . . . . . . . . . . . . . . 17 ((♯‘[𝑤] ) ∥ (♯‘𝑋) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) → ∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛)))
8276, 78, 81sylc 65 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → ∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛))
83 pcprmpw2 16920 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (♯‘[𝑤] ) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛) ↔ (♯‘[𝑤] ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] )))))
8441, 54, 83syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → (∃𝑛 ∈ ℕ0 (♯‘[𝑤] ) ∥ (𝑃𝑛) ↔ (♯‘[𝑤] ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] )))))
8582, 84mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → (♯‘[𝑤] ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ))))
8685eqcomd 2743 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (♯‘[𝑤] ))
8722adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑃 ∈ ℤ)
8887zcnd 12723 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑃 ∈ ℂ)
8988exp0d 14180 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → (𝑃↑0) = 1)
90 hash1 14443 . . . . . . . . . . . . . . 15 (♯‘1o) = 1
9189, 90eqtr4di 2795 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑃↑0) = (♯‘1o))
9286, 91eqeq12d 2753 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) ↔ (♯‘[𝑤] ) = (♯‘1o)))
93 df1o2 8513 . . . . . . . . . . . . . . 15 1o = {∅}
94 snfi 9083 . . . . . . . . . . . . . . 15 {∅} ∈ Fin
9593, 94eqeltri 2837 . . . . . . . . . . . . . 14 1o ∈ Fin
96 hashen 14386 . . . . . . . . . . . . . 14 (([𝑤] ∈ Fin ∧ 1o ∈ Fin) → ((♯‘[𝑤] ) = (♯‘1o) ↔ [𝑤] ≈ 1o))
9751, 95, 96sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ((♯‘[𝑤] ) = (♯‘1o) ↔ [𝑤] ≈ 1o))
9892, 97bitrd 279 . . . . . . . . . . . 12 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) ↔ [𝑤] ≈ 1o))
99 en1b 9065 . . . . . . . . . . . 12 ([𝑤] ≈ 1o ↔ [𝑤] = { [𝑤] })
10098, 99bitrdi 287 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) ↔ [𝑤] = { [𝑤] }))
10143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤𝑌)
1024ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ∈ (𝐺 GrpAct 𝑌))
1036gaf 19313 . . . . . . . . . . . . . . . . . . . 20 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → :(𝑋 × 𝑌)⟶𝑌)
105 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑋)
106104, 105, 101fovcdmd 7605 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) ∈ 𝑌)
107 eqid 2737 . . . . . . . . . . . . . . . . . . 19 ( 𝑤) = ( 𝑤)
108 oveq1 7438 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = → (𝑘 𝑤) = ( 𝑤))
109108eqeq1d 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → ((𝑘 𝑤) = ( 𝑤) ↔ ( 𝑤) = ( 𝑤)))
110109rspcev 3622 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∧ ( 𝑤) = ( 𝑤)) → ∃𝑘𝑋 (𝑘 𝑤) = ( 𝑤))
111105, 107, 110sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ∃𝑘𝑋 (𝑘 𝑤) = ( 𝑤))
1125gaorb 19325 . . . . . . . . . . . . . . . . . 18 (𝑤 ( 𝑤) ↔ (𝑤𝑌 ∧ ( 𝑤) ∈ 𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑤) = ( 𝑤)))
113101, 106, 111, 112syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 ( 𝑤))
114 ovex 7464 . . . . . . . . . . . . . . . . . 18 ( 𝑤) ∈ V
115114, 45elec 8791 . . . . . . . . . . . . . . . . 17 (( 𝑤) ∈ [𝑤] 𝑤 ( 𝑤))
116113, 115sylibr 234 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) ∈ [𝑤] )
117 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → [𝑤] = { [𝑤] })
118116, 117eleqtrd 2843 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) ∈ { [𝑤] })
119114elsn 4641 . . . . . . . . . . . . . . 15 (( 𝑤) ∈ { [𝑤] } ↔ ( 𝑤) = [𝑤] )
120118, 119sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) = [𝑤] )
12147adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 ∈ [𝑤] )
122121, 117eleqtrd 2843 . . . . . . . . . . . . . . 15 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 ∈ { [𝑤] })
12345elsn 4641 . . . . . . . . . . . . . . 15 (𝑤 ∈ { [𝑤] } ↔ 𝑤 = [𝑤] )
124122, 123sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → 𝑤 = [𝑤] )
125120, 124eqtr4d 2780 . . . . . . . . . . . . 13 (((𝜑𝑤𝑌) ∧ (𝑋 ∧ [𝑤] = { [𝑤] })) → ( 𝑤) = 𝑤)
126125expr 456 . . . . . . . . . . . 12 (((𝜑𝑤𝑌) ∧ 𝑋) → ([𝑤] = { [𝑤] } → ( 𝑤) = 𝑤))
127126ralrimdva 3154 . . . . . . . . . . 11 ((𝜑𝑤𝑌) → ([𝑤] = { [𝑤] } → ∀𝑋 ( 𝑤) = 𝑤))
128100, 127sylbid 240 . . . . . . . . . 10 ((𝜑𝑤𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ))) = (𝑃↑0) → ∀𝑋 ( 𝑤) = 𝑤))
12957, 128syl5 34 . . . . . . . . 9 ((𝜑𝑤𝑌) → ((𝑃 pCnt (♯‘[𝑤] )) = 0 → ∀𝑋 ( 𝑤) = 𝑤))
13056, 129sylbird 260 . . . . . . . 8 ((𝜑𝑤𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ) → ∀𝑋 ( 𝑤) = 𝑤))
131 oveq2 7439 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → ( 𝑢) = ( 𝑤))
132 id 22 . . . . . . . . . . . . 13 (𝑢 = 𝑤𝑢 = 𝑤)
133131, 132eqeq12d 2753 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (( 𝑢) = 𝑢 ↔ ( 𝑤) = 𝑤))
134133ralbidv 3178 . . . . . . . . . . 11 (𝑢 = 𝑤 → (∀𝑋 ( 𝑢) = 𝑢 ↔ ∀𝑋 ( 𝑤) = 𝑤))
135 sylow2a.z . . . . . . . . . . 11 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
136134, 135elrab2 3695 . . . . . . . . . 10 (𝑤𝑍 ↔ (𝑤𝑌 ∧ ∀𝑋 ( 𝑤) = 𝑤))
137136baib 535 . . . . . . . . 9 (𝑤𝑌 → (𝑤𝑍 ↔ ∀𝑋 ( 𝑤) = 𝑤))
138137adantl 481 . . . . . . . 8 ((𝜑𝑤𝑌) → (𝑤𝑍 ↔ ∀𝑋 ( 𝑤) = 𝑤))
139130, 138sylibrd 259 . . . . . . 7 ((𝜑𝑤𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ) → 𝑤𝑍))
1406, 4, 13, 16, 1, 135, 5sylow2alem1 19635 . . . . . . . . . 10 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
141 simpr 484 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → 𝑤𝑍)
142141snssd 4809 . . . . . . . . . 10 ((𝜑𝑤𝑍) → {𝑤} ⊆ 𝑍)
143140, 142eqsstrd 4018 . . . . . . . . 9 ((𝜑𝑤𝑍) → [𝑤] 𝑍)
144143ex 412 . . . . . . . 8 (𝜑 → (𝑤𝑍 → [𝑤] 𝑍))
145144adantr 480 . . . . . . 7 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] 𝑍))
146139, 145syld 47 . . . . . 6 ((𝜑𝑤𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ) → [𝑤] 𝑍))
147146con1d 145 . . . . 5 ((𝜑𝑤𝑌) → (¬ [𝑤] 𝑍𝑃 ∥ (♯‘[𝑤] )))
14833, 40, 147ectocld 8824 . . . 4 ((𝜑𝑧 ∈ (𝑌 / )) → (¬ 𝑧 ∈ 𝒫 𝑍𝑃 ∥ (♯‘𝑧)))
149148impr 454 . . 3 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) → 𝑃 ∥ (♯‘𝑧))
15032, 149sylan2b 594 . 2 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → 𝑃 ∥ (♯‘𝑧))
15112, 22, 31, 150fsumdvds 16345 1 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626  {cpr 4628   cuni 4907   class class class wbr 5143  {copab 5205   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  1oc1o 8499   Er wer 8742  [cec 8743   / cqs 8744  cen 8982  Fincfn 8985  0cc0 11155  1c1 11156   · cmul 11160  cn 12266  0cn0 12526  cz 12613  cexp 14102  chash 14369  Σcsu 15722  cdvds 16290  cprime 16708   pCnt cpc 16874  Basecbs 17247  Grpcgrp 18951   ~QG cqg 19140   GrpAct cga 19307   pGrp cpgp 19544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-eqg 19143  df-ga 19308  df-od 19546  df-pgp 19548
This theorem is referenced by:  sylow2a  19637
  Copyright terms: Public domain W3C validator