| Step | Hyp | Ref
| Expression |
| 1 | | sylow2a.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 2 | | pwfi 9357 |
. . . . 5
⊢ (𝑌 ∈ Fin ↔ 𝒫
𝑌 ∈
Fin) |
| 3 | 1, 2 | sylib 218 |
. . . 4
⊢ (𝜑 → 𝒫 𝑌 ∈ Fin) |
| 4 | | sylow2a.m |
. . . . . 6
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 5 | | sylow2a.r |
. . . . . . 7
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
| 6 | | sylow2a.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
| 7 | 5, 6 | gaorber 19326 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ∼ Er 𝑌) |
| 8 | 4, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → ∼ Er 𝑌) |
| 9 | 8 | qsss 8818 |
. . . 4
⊢ (𝜑 → (𝑌 / ∼ ) ⊆ 𝒫
𝑌) |
| 10 | 3, 9 | ssfid 9301 |
. . 3
⊢ (𝜑 → (𝑌 / ∼ ) ∈
Fin) |
| 11 | | diffi 9215 |
. . 3
⊢ ((𝑌 / ∼ ) ∈ Fin →
((𝑌 / ∼ )
∖ 𝒫 𝑍) ∈
Fin) |
| 12 | 10, 11 | syl 17 |
. 2
⊢ (𝜑 → ((𝑌 / ∼ ) ∖ 𝒫
𝑍) ∈
Fin) |
| 13 | | sylow2a.p |
. . . . 5
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
| 14 | | gagrp 19310 |
. . . . . . 7
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
| 15 | 4, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 16 | | sylow2a.f |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 17 | 6 | pgpfi 19623 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)))) |
| 18 | 15, 16, 17 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)))) |
| 19 | 13, 18 | mpbid 232 |
. . . 4
⊢ (𝜑 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛))) |
| 20 | 19 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 21 | | prmz 16712 |
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 22 | 20, 21 | syl 17 |
. 2
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 23 | | eldifi 4131 |
. . . . 5
⊢ (𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍) → 𝑧 ∈ (𝑌 / ∼ )) |
| 24 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑌 ∈ Fin) |
| 25 | 9 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ∈ 𝒫 𝑌) |
| 26 | 25 | elpwid 4609 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ⊆ 𝑌) |
| 27 | 24, 26 | ssfid 9301 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → 𝑧 ∈ Fin) |
| 28 | 23, 27 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → 𝑧 ∈ Fin) |
| 29 | | hashcl 14395 |
. . . 4
⊢ (𝑧 ∈ Fin →
(♯‘𝑧) ∈
ℕ0) |
| 30 | 28, 29 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) →
(♯‘𝑧) ∈
ℕ0) |
| 31 | 30 | nn0zd 12639 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) →
(♯‘𝑧) ∈
ℤ) |
| 32 | | eldif 3961 |
. . 3
⊢ (𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍) ↔ (𝑧 ∈ (𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) |
| 33 | | eqid 2737 |
. . . . 5
⊢ (𝑌 / ∼ ) = (𝑌 / ∼ ) |
| 34 | | sseq1 4009 |
. . . . . . . 8
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ 𝑍 ↔ 𝑧 ⊆ 𝑍)) |
| 35 | | velpw 4605 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝒫 𝑍 ↔ 𝑧 ⊆ 𝑍) |
| 36 | 34, 35 | bitr4di 289 |
. . . . . . 7
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ 𝑍 ↔ 𝑧 ∈ 𝒫 𝑍)) |
| 37 | 36 | notbid 318 |
. . . . . 6
⊢ ([𝑤] ∼ = 𝑧 → (¬ [𝑤] ∼ ⊆ 𝑍 ↔ ¬ 𝑧 ∈ 𝒫 𝑍)) |
| 38 | | fveq2 6906 |
. . . . . . 7
⊢ ([𝑤] ∼ = 𝑧 → (♯‘[𝑤] ∼ ) =
(♯‘𝑧)) |
| 39 | 38 | breq2d 5155 |
. . . . . 6
⊢ ([𝑤] ∼ = 𝑧 → (𝑃 ∥ (♯‘[𝑤] ∼ ) ↔ 𝑃 ∥ (♯‘𝑧))) |
| 40 | 37, 39 | imbi12d 344 |
. . . . 5
⊢ ([𝑤] ∼ = 𝑧 → ((¬ [𝑤] ∼ ⊆ 𝑍 → 𝑃 ∥ (♯‘[𝑤] ∼ )) ↔ (¬
𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ (♯‘𝑧)))) |
| 41 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℙ) |
| 42 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∼ Er 𝑌) |
| 43 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑌) |
| 44 | 42, 43 | erref 8765 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∼ 𝑤) |
| 45 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
| 46 | 45, 45 | elec 8791 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ [𝑤] ∼ ↔ 𝑤 ∼ 𝑤) |
| 47 | 44, 46 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ [𝑤] ∼ ) |
| 48 | 47 | ne0d 4342 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → [𝑤] ∼ ≠
∅) |
| 49 | 8 | ecss 8793 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → [𝑤] ∼ ⊆ 𝑌) |
| 50 | 1, 49 | ssfid 9301 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑤] ∼ ∈
Fin) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → [𝑤] ∼ ∈
Fin) |
| 52 | | hashnncl 14405 |
. . . . . . . . . . . 12
⊢ ([𝑤] ∼ ∈ Fin →
((♯‘[𝑤] ∼ )
∈ ℕ ↔ [𝑤]
∼
≠ ∅)) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((♯‘[𝑤] ∼ ) ∈ ℕ
↔ [𝑤] ∼ ≠
∅)) |
| 54 | 48, 53 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) ∈
ℕ) |
| 55 | | pceq0 16909 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧
(♯‘[𝑤] ∼ )
∈ ℕ) → ((𝑃
pCnt (♯‘[𝑤]
∼
)) = 0 ↔ ¬ 𝑃
∥ (♯‘[𝑤]
∼
))) |
| 56 | 41, 54, 55 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃 pCnt (♯‘[𝑤] ∼ )) = 0 ↔ ¬
𝑃 ∥
(♯‘[𝑤] ∼
))) |
| 57 | | oveq2 7439 |
. . . . . . . . . 10
⊢ ((𝑃 pCnt (♯‘[𝑤] ∼ )) = 0 →
(𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0)) |
| 58 | | hashcl 14395 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ([𝑤] ∼ ∈ Fin →
(♯‘[𝑤] ∼ )
∈ ℕ0) |
| 59 | 50, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (♯‘[𝑤] ∼ ) ∈
ℕ0) |
| 60 | 59 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (♯‘[𝑤] ∼ ) ∈
ℤ) |
| 61 | | ssrab2 4080 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ⊆ 𝑋 |
| 62 | | ssfi 9213 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋 ∈ Fin ∧ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ⊆ 𝑋) → {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin) |
| 63 | 16, 61, 62 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin) |
| 64 | | hashcl 14395 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} ∈ Fin → (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈
ℕ0) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈
ℕ0) |
| 66 | 65 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈ ℤ) |
| 67 | | dvdsmul1 16315 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘[𝑤]
∼
) ∈ ℤ ∧ (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) ∈ ℤ) →
(♯‘[𝑤] ∼ )
∥ ((♯‘[𝑤]
∼
) · (♯‘{𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 68 | 60, 66, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘[𝑤] ∼ ) ∥
((♯‘[𝑤] ∼ )
· (♯‘{𝑣
∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) ∥
((♯‘[𝑤] ∼ )
· (♯‘{𝑣
∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 70 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 71 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑋 ∈ Fin) |
| 72 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} = {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤} |
| 73 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) = (𝐺 ~QG {𝑣 ∈ 𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}) |
| 74 | 6, 72, 73, 5 | orbsta2 19332 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑤 ∈ 𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝑤] ∼ ) ·
(♯‘{𝑣 ∈
𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 75 | 70, 43, 71, 74 | syl21anc 838 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘𝑋) = ((♯‘[𝑤] ∼ ) ·
(♯‘{𝑣 ∈
𝑋 ∣ (𝑣 ⊕ 𝑤) = 𝑤}))) |
| 76 | 69, 75 | breqtrrd 5171 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) ∥
(♯‘𝑋)) |
| 77 | 19 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)) |
| 78 | 77 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∃𝑛 ∈ ℕ0
(♯‘𝑋) = (𝑃↑𝑛)) |
| 79 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑋) =
(𝑃↑𝑛) → ((♯‘[𝑤] ∼ ) ∥
(♯‘𝑋) ↔
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛))) |
| 80 | 79 | biimpcd 249 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘[𝑤]
∼
) ∥ (♯‘𝑋)
→ ((♯‘𝑋) =
(𝑃↑𝑛) → (♯‘[𝑤] ∼ ) ∥ (𝑃↑𝑛))) |
| 81 | 80 | reximdv 3170 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘[𝑤]
∼
) ∥ (♯‘𝑋)
→ (∃𝑛 ∈
ℕ0 (♯‘𝑋) = (𝑃↑𝑛) → ∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛))) |
| 82 | 76, 78, 81 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛)) |
| 83 | | pcprmpw2 16920 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℙ ∧
(♯‘[𝑤] ∼ )
∈ ℕ) → (∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛) ↔ (♯‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼
))))) |
| 84 | 41, 54, 83 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (∃𝑛 ∈ ℕ0
(♯‘[𝑤] ∼ )
∥ (𝑃↑𝑛) ↔ (♯‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼
))))) |
| 85 | 82, 84 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (♯‘[𝑤] ∼ ) = (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼
)))) |
| 86 | 85 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) =
(♯‘[𝑤] ∼
)) |
| 87 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℤ) |
| 88 | 87 | zcnd 12723 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → 𝑃 ∈ ℂ) |
| 89 | 88 | exp0d 14180 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑0) = 1) |
| 90 | | hash1 14443 |
. . . . . . . . . . . . . . 15
⊢
(♯‘1o) = 1 |
| 91 | 89, 90 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑃↑0) =
(♯‘1o)) |
| 92 | 86, 91 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) ↔
(♯‘[𝑤] ∼ ) =
(♯‘1o))) |
| 93 | | df1o2 8513 |
. . . . . . . . . . . . . . 15
⊢
1o = {∅} |
| 94 | | snfi 9083 |
. . . . . . . . . . . . . . 15
⊢ {∅}
∈ Fin |
| 95 | 93, 94 | eqeltri 2837 |
. . . . . . . . . . . . . 14
⊢
1o ∈ Fin |
| 96 | | hashen 14386 |
. . . . . . . . . . . . . 14
⊢ (([𝑤] ∼ ∈ Fin ∧
1o ∈ Fin) → ((♯‘[𝑤] ∼ ) =
(♯‘1o) ↔ [𝑤] ∼ ≈
1o)) |
| 97 | 51, 95, 96 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((♯‘[𝑤] ∼ ) =
(♯‘1o) ↔ [𝑤] ∼ ≈
1o)) |
| 98 | 92, 97 | bitrd 279 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) ↔ [𝑤] ∼ ≈
1o)) |
| 99 | | en1b 9065 |
. . . . . . . . . . . 12
⊢ ([𝑤] ∼ ≈
1o ↔ [𝑤]
∼
= {∪ [𝑤] ∼ }) |
| 100 | 98, 99 | bitrdi 287 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) ↔ [𝑤] ∼ = {∪ [𝑤]
∼
})) |
| 101 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ 𝑌) |
| 102 | 4 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 103 | 6 | gaf 19313 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 105 | | simprl 771 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ℎ ∈ 𝑋) |
| 106 | 104, 105,
101 | fovcdmd 7605 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ 𝑌) |
| 107 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤) |
| 108 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
| 109 | 108 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤) ↔ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤))) |
| 110 | 109 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ ∈ 𝑋 ∧ (ℎ ⊕ 𝑤) = (ℎ ⊕ 𝑤)) → ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
| 111 | 105, 107,
110 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → ∃𝑘 ∈
𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤)) |
| 112 | 5 | gaorb 19325 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∼ (ℎ ⊕ 𝑤) ↔ (𝑤 ∈ 𝑌 ∧ (ℎ ⊕ 𝑤) ∈ 𝑌 ∧ ∃𝑘 ∈ 𝑋 (𝑘 ⊕ 𝑤) = (ℎ ⊕ 𝑤))) |
| 113 | 101, 106,
111, 112 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∼ (ℎ ⊕ 𝑤)) |
| 114 | | ovex 7464 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ ⊕ 𝑤) ∈ V |
| 115 | 114, 45 | elec 8791 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ ⊕ 𝑤) ∈ [𝑤] ∼ ↔ 𝑤 ∼ (ℎ ⊕ 𝑤)) |
| 116 | 113, 115 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ [𝑤] ∼ ) |
| 117 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → [𝑤] ∼ =
{∪ [𝑤] ∼ }) |
| 118 | 116, 117 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) ∈ {∪ [𝑤]
∼
}) |
| 119 | 114 | elsn 4641 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ⊕ 𝑤) ∈ {∪ [𝑤] ∼ } ↔ (ℎ ⊕ 𝑤) = ∪ [𝑤] ∼ ) |
| 120 | 118, 119 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) = ∪
[𝑤] ∼ ) |
| 121 | 47 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ [𝑤] ∼ ) |
| 122 | 121, 117 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 ∈ {∪ [𝑤]
∼
}) |
| 123 | 45 | elsn 4641 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {∪ [𝑤]
∼
} ↔ 𝑤 = ∪ [𝑤]
∼
) |
| 124 | 122, 123 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → 𝑤 = ∪ [𝑤]
∼
) |
| 125 | 120, 124 | eqtr4d 2780 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ (ℎ ∈ 𝑋 ∧ [𝑤] ∼ = {∪ [𝑤]
∼
})) → (ℎ ⊕ 𝑤) = 𝑤) |
| 126 | 125 | expr 456 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑌) ∧ ℎ ∈ 𝑋) → ([𝑤] ∼ = {∪ [𝑤]
∼
} → (ℎ ⊕ 𝑤) = 𝑤)) |
| 127 | 126 | ralrimdva 3154 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ([𝑤] ∼ = {∪ [𝑤]
∼
} → ∀ℎ ∈
𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 128 | 100, 127 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃↑(𝑃 pCnt (♯‘[𝑤] ∼ ))) = (𝑃↑0) → ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 129 | 57, 128 | syl5 34 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝑃 pCnt (♯‘[𝑤] ∼ )) = 0 →
∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 130 | 56, 129 | sylbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ∼ ) →
∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 131 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑤 → (ℎ ⊕ 𝑢) = (ℎ ⊕ 𝑤)) |
| 132 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑤 → 𝑢 = 𝑤) |
| 133 | 131, 132 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑤 → ((ℎ ⊕ 𝑢) = 𝑢 ↔ (ℎ ⊕ 𝑤) = 𝑤)) |
| 134 | 133 | ralbidv 3178 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑤 → (∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 135 | | sylow2a.z |
. . . . . . . . . . 11
⊢ 𝑍 = {𝑢 ∈ 𝑌 ∣ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑢) = 𝑢} |
| 136 | 134, 135 | elrab2 3695 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑍 ↔ (𝑤 ∈ 𝑌 ∧ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 137 | 136 | baib 535 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑌 → (𝑤 ∈ 𝑍 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 138 | 137 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑤 ∈ 𝑍 ↔ ∀ℎ ∈ 𝑋 (ℎ ⊕ 𝑤) = 𝑤)) |
| 139 | 130, 138 | sylibrd 259 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ∼ ) → 𝑤 ∈ 𝑍)) |
| 140 | 6, 4, 13, 16, 1, 135, 5 | sylow2alem1 19635 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → [𝑤] ∼ = {𝑤}) |
| 141 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ 𝑍) |
| 142 | 141 | snssd 4809 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → {𝑤} ⊆ 𝑍) |
| 143 | 140, 142 | eqsstrd 4018 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → [𝑤] ∼ ⊆ 𝑍) |
| 144 | 143 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ 𝑍 → [𝑤] ∼ ⊆ 𝑍)) |
| 145 | 144 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝑤 ∈ 𝑍 → [𝑤] ∼ ⊆ 𝑍)) |
| 146 | 139, 145 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ 𝑃 ∥ (♯‘[𝑤] ∼ ) → [𝑤] ∼ ⊆ 𝑍)) |
| 147 | 146 | con1d 145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (¬ [𝑤] ∼ ⊆ 𝑍 → 𝑃 ∥ (♯‘[𝑤] ∼
))) |
| 148 | 33, 40, 147 | ectocld 8824 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 / ∼ )) → (¬
𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ (♯‘𝑧))) |
| 149 | 148 | impr 454 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ (𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍)) → 𝑃 ∥ (♯‘𝑧)) |
| 150 | 32, 149 | sylan2b 594 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)) → 𝑃 ∥ (♯‘𝑧)) |
| 151 | 12, 22, 31, 150 | fsumdvds 16345 |
1
⊢ (𝜑 → 𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ∼ ) ∖ 𝒫
𝑍)(♯‘𝑧)) |