| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. 2
⊢ (𝑋 / ∼ ) = (𝑋 / ∼ ) |
| 2 | | breq2 5128 |
. 2
⊢ ([𝑥] ∼ = 𝐴 → (𝑌 ≈ [𝑥] ∼ ↔ 𝑌 ≈ 𝐴)) |
| 3 | | simpl 482 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑌 ∈ (SubGrp‘𝐺)) |
| 4 | | subgrcl 19119 |
. . . . . . 7
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 5 | | eqger.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
| 6 | 5 | subgss 19115 |
. . . . . . 7
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
| 7 | 4, 6 | jca 511 |
. . . . . 6
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋)) |
| 8 | | eqger.r |
. . . . . . . 8
⊢ ∼ =
(𝐺 ~QG
𝑌) |
| 9 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 10 | 5, 8, 9 | eqglact 19167 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋) → [𝑥] ∼ = ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) |
| 11 | 10 | 3expa 1118 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → [𝑥] ∼ = ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) |
| 12 | 7, 11 | sylan 580 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → [𝑥] ∼ = ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) |
| 13 | 8 | ovexi 7444 |
. . . . . 6
⊢ ∼ ∈
V |
| 14 | | ecexg 8728 |
. . . . . 6
⊢ ( ∼ ∈
V → [𝑥] ∼ ∈
V) |
| 15 | 13, 14 | ax-mp 5 |
. . . . 5
⊢ [𝑥] ∼ ∈
V |
| 16 | 12, 15 | eqeltrrdi 2844 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌) ∈ V) |
| 17 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑋 ↦ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧))) = (𝑦 ∈ 𝑋 ↦ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧))) |
| 18 | 17, 5, 9 | grplactf1o 19032 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑋 ↦ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)))‘𝑥):𝑋–1-1-onto→𝑋) |
| 19 | 17, 5 | grplactfval 19029 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → ((𝑦 ∈ 𝑋 ↦ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)))‘𝑥) = (𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧))) |
| 20 | 19 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑋 ↦ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)))‘𝑥) = (𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧))) |
| 21 | 20 | f1oeq1d 6818 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑋 ↦ (𝑧 ∈ 𝑋 ↦ (𝑦(+g‘𝐺)𝑧)))‘𝑥):𝑋–1-1-onto→𝑋 ↔ (𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)):𝑋–1-1-onto→𝑋)) |
| 22 | 18, 21 | mpbid 232 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)):𝑋–1-1-onto→𝑋) |
| 23 | 4, 22 | sylan 580 |
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)):𝑋–1-1-onto→𝑋) |
| 24 | | f1of1 6822 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)):𝑋–1-1-onto→𝑋 → (𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)):𝑋–1-1→𝑋) |
| 25 | 23, 24 | syl 17 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)):𝑋–1-1→𝑋) |
| 26 | 6 | adantr 480 |
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑌 ⊆ 𝑋) |
| 27 | | f1ores 6837 |
. . . . 5
⊢ (((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)):𝑋–1-1→𝑋 ∧ 𝑌 ⊆ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) ↾ 𝑌):𝑌–1-1-onto→((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) |
| 28 | 25, 26, 27 | syl2anc 584 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) ↾ 𝑌):𝑌–1-1-onto→((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) |
| 29 | | f1oen2g 8988 |
. . . 4
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌) ∈ V ∧ ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) ↾ 𝑌):𝑌–1-1-onto→((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) → 𝑌 ≈ ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) |
| 30 | 3, 16, 28, 29 | syl3anc 1373 |
. . 3
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑌 ≈ ((𝑧 ∈ 𝑋 ↦ (𝑥(+g‘𝐺)𝑧)) “ 𝑌)) |
| 31 | 30, 12 | breqtrrd 5152 |
. 2
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑌 ≈ [𝑥] ∼ ) |
| 32 | 1, 2, 31 | ectocld 8803 |
1
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝐴) |