Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgen Structured version   Visualization version   GIF version

Theorem eqgen 18309
 Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
Assertion
Ref Expression
eqgen ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)

Proof of Theorem eqgen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2820 . 2 (𝑋 / ) = (𝑋 / )
2 breq2 5044 . 2 ([𝑥] = 𝐴 → (𝑌 ≈ [𝑥] 𝑌𝐴))
3 simpl 485 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ∈ (SubGrp‘𝐺))
4 subgrcl 18260 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5 eqger.x . . . . . . . 8 𝑋 = (Base‘𝐺)
65subgss 18256 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
74, 6jca 514 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ∈ Grp ∧ 𝑌𝑋))
8 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
9 eqid 2820 . . . . . . . 8 (+g𝐺) = (+g𝐺)
105, 8, 9eqglact 18307 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
11103expa 1114 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
127, 11sylan 582 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
138ovexi 7165 . . . . . 6 ∈ V
14 ecexg 8269 . . . . . 6 ( ∈ V → [𝑥] ∈ V)
1513, 14ax-mp 5 . . . . 5 [𝑥] ∈ V
1612, 15eqeltrrdi 2920 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V)
17 eqid 2820 . . . . . . . . 9 (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))) = (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))
1817, 5, 9grplactf1o 18179 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋)
1917, 5grplactfval 18176 . . . . . . . . . 10 (𝑥𝑋 → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
2019adantl 484 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
21 f1oeq1 6578 . . . . . . . . 9 (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) → (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
2220, 21syl 17 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
2318, 22mpbid 234 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
244, 23sylan 582 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
25 f1of1 6588 . . . . . 6 ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
2624, 25syl 17 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
276adantr 483 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌𝑋)
28 f1ores 6603 . . . . 5 (((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋𝑌𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
2926, 27, 28syl2anc 586 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
30 f1oen2g 8502 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌)) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
313, 16, 29, 30syl3anc 1367 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
3231, 12breqtrrd 5068 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ [𝑥] )
331, 2, 32ectocld 8340 1 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114  Vcvv 3473   ⊆ wss 3912   class class class wbr 5040   ↦ cmpt 5120   ↾ cres 5531   “ cima 5532  –1-1→wf1 6326  –1-1-onto→wf1o 6328  ‘cfv 6329  (class class class)co 7131  [cec 8263   / cqs 8264   ≈ cen 8482  Basecbs 16459  +gcplusg 16541  Grpcgrp 18079  SubGrpcsubg 18249   ~QG cqg 18251 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4813  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5434  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-ec 8267  df-qs 8271  df-en 8486  df-0g 16691  df-mgm 17828  df-sgrp 17877  df-mnd 17888  df-grp 18082  df-minusg 18083  df-subg 18252  df-eqg 18254 This theorem is referenced by:  lagsubg2  18317  sylow2blem1  18721
 Copyright terms: Public domain W3C validator