MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsel Structured version   Visualization version   GIF version

Theorem qsel 8376
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)

Proof of Theorem qsel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 eleq2 2901 . . . 4 ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅𝐶𝐵))
3 eqeq1 2825 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅𝐵 = [𝐶]𝑅))
42, 3imbi12d 347 . . 3 ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶𝐵𝐵 = [𝐶]𝑅)))
5 elecg 8332 . . . . . 6 ((𝐶 ∈ [𝑥]𝑅𝑥 ∈ V) → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
65elvd 3500 . . . . 5 (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
76ibi 269 . . . 4 (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶)
8 simpll 765 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑅 Er 𝑋)
9 simpr 487 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶)
108, 9erthi 8340 . . . . 5 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅)
1110ex 415 . . . 4 ((𝑅 Er 𝑋𝑥𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅))
127, 11syl5 34 . . 3 ((𝑅 Er 𝑋𝑥𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅))
131, 4, 12ectocld 8364 . 2 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅)) → (𝐶𝐵𝐵 = [𝐶]𝑅))
14133impia 1113 1 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066   Er wer 8286  [cec 8287   / cqs 8288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-er 8289  df-ec 8291  df-qs 8295
This theorem is referenced by:  frgpnabllem2  18994  prter3  36033
  Copyright terms: Public domain W3C validator