![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsel | Structured version Visualization version GIF version |
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
qsel | ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | eleq2 2828 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝐶 ∈ 𝐵)) | |
3 | eqeq1 2739 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅 ↔ 𝐵 = [𝐶]𝑅)) | |
4 | 2, 3 | imbi12d 344 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅))) |
5 | elecg 8788 | . . . . . 6 ⊢ ((𝐶 ∈ [𝑥]𝑅 ∧ 𝑥 ∈ V) → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) | |
6 | 5 | elvd 3484 | . . . . 5 ⊢ (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) |
7 | 6 | ibi 267 | . . . 4 ⊢ (𝐶 ∈ [𝑥]𝑅 → 𝑥𝑅𝐶) |
8 | simpll 767 | . . . . . 6 ⊢ (((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → 𝑅 Er 𝑋) | |
9 | simpr 484 | . . . . . 6 ⊢ (((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶) | |
10 | 8, 9 | erthi 8797 | . . . . 5 ⊢ (((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅) |
11 | 10 | ex 412 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅)) |
12 | 7, 11 | syl5 34 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅)) |
13 | 1, 4, 12 | ectocld 8823 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅)) |
14 | 13 | 3impia 1116 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 Er wer 8741 [cec 8742 / cqs 8743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-er 8744 df-ec 8746 df-qs 8750 |
This theorem is referenced by: ghmqusnsg 19313 ghmquskerlem3 19317 ghmqusker 19318 frgpnabllem2 19907 rhmqusnsg 21313 lmhmqusker 33425 rhmquskerlem 33433 prter3 38864 |
Copyright terms: Public domain | W3C validator |