![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsel | Structured version Visualization version GIF version |
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
qsel | ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | eleq2 2827 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝐶 ∈ 𝐵)) | |
3 | eqeq1 2741 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅 ↔ 𝐵 = [𝐶]𝑅)) | |
4 | 2, 3 | imbi12d 345 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅))) |
5 | elecg 8692 | . . . . . 6 ⊢ ((𝐶 ∈ [𝑥]𝑅 ∧ 𝑥 ∈ V) → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) | |
6 | 5 | elvd 3453 | . . . . 5 ⊢ (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) |
7 | 6 | ibi 267 | . . . 4 ⊢ (𝐶 ∈ [𝑥]𝑅 → 𝑥𝑅𝐶) |
8 | simpll 766 | . . . . . 6 ⊢ (((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → 𝑅 Er 𝑋) | |
9 | simpr 486 | . . . . . 6 ⊢ (((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶) | |
10 | 8, 9 | erthi 8700 | . . . . 5 ⊢ (((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅) |
11 | 10 | ex 414 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅)) |
12 | 7, 11 | syl5 34 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅)) |
13 | 1, 4, 12 | ectocld 8724 | . 2 ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅)) |
14 | 13 | 3impia 1118 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3446 class class class wbr 5106 Er wer 8646 [cec 8647 / cqs 8648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-er 8649 df-ec 8651 df-qs 8655 |
This theorem is referenced by: frgpnabllem2 19653 ghmqusker 32201 prter3 37347 |
Copyright terms: Public domain | W3C validator |