MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem2 Structured version   Visualization version   GIF version

Theorem sylow2blem2 18243
Description: Lemma for sylow2b 18245. Left multiplication in a subgroup 𝐻 is a group action on the set of all left cosets of 𝐾. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow2blem2 (𝜑· ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐾,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝜑,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sylow2blem2
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.h . . . 4 (𝜑𝐻 ∈ (SubGrp‘𝐺))
2 eqid 2771 . . . . 5 (𝐺s 𝐻) = (𝐺s 𝐻)
32subggrp 17805 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
41, 3syl 17 . . 3 (𝜑 → (𝐺s 𝐻) ∈ Grp)
5 sylow2b.xf . . . . 5 (𝜑𝑋 ∈ Fin)
6 pwfi 8417 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
75, 6sylib 208 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
8 sylow2b.k . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
9 sylow2b.x . . . . . . 7 𝑋 = (Base‘𝐺)
10 sylow2b.r . . . . . . 7 = (𝐺 ~QG 𝐾)
119, 10eqger 17852 . . . . . 6 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
128, 11syl 17 . . . . 5 (𝜑 Er 𝑋)
1312qsss 7960 . . . 4 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
147, 13ssexd 4939 . . 3 (𝜑 → (𝑋 / ) ∈ V)
154, 14jca 501 . 2 (𝜑 → ((𝐺s 𝐻) ∈ Grp ∧ (𝑋 / ) ∈ V))
16 sylow2b.m . . . . . . 7 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
17 vex 3354 . . . . . . . . 9 𝑦 ∈ V
1817mptex 6630 . . . . . . . 8 (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ V
1918rnex 7247 . . . . . . 7 ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ V
2016, 19fnmpt2i 7389 . . . . . 6 · Fn (𝐻 × (𝑋 / ))
2120a1i 11 . . . . 5 (𝜑· Fn (𝐻 × (𝑋 / )))
22 eqid 2771 . . . . . . . 8 (𝑋 / ) = (𝑋 / )
23 oveq2 6801 . . . . . . . . 9 ([𝑠] = 𝑣 → (𝑢 · [𝑠] ) = (𝑢 · 𝑣))
2423eleq1d 2835 . . . . . . . 8 ([𝑠] = 𝑣 → ((𝑢 · [𝑠] ) ∈ (𝑋 / ) ↔ (𝑢 · 𝑣) ∈ (𝑋 / )))
25 sylow2b.a . . . . . . . . . . 11 + = (+g𝐺)
269, 5, 1, 8, 25, 10, 16sylow2blem1 18242 . . . . . . . . . 10 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 · [𝑠] ) = [(𝑢 + 𝑠)] )
27 ovex 6823 . . . . . . . . . . . 12 (𝐺 ~QG 𝐾) ∈ V
2810, 27eqeltri 2846 . . . . . . . . . . 11 ∈ V
29 subgrcl 17807 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
301, 29syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
31303ad2ant1 1127 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝐺 ∈ Grp)
329subgss 17803 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝜑𝐻𝑋)
3433sselda 3752 . . . . . . . . . . . . 13 ((𝜑𝑢𝐻) → 𝑢𝑋)
35343adant3 1126 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝑢𝑋)
36 simp3 1132 . . . . . . . . . . . 12 ((𝜑𝑢𝐻𝑠𝑋) → 𝑠𝑋)
379, 25grpcl 17638 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑠𝑋) → (𝑢 + 𝑠) ∈ 𝑋)
3831, 35, 36, 37syl3anc 1476 . . . . . . . . . . 11 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 + 𝑠) ∈ 𝑋)
39 ecelqsg 7954 . . . . . . . . . . 11 (( ∈ V ∧ (𝑢 + 𝑠) ∈ 𝑋) → [(𝑢 + 𝑠)] ∈ (𝑋 / ))
4028, 38, 39sylancr 575 . . . . . . . . . 10 ((𝜑𝑢𝐻𝑠𝑋) → [(𝑢 + 𝑠)] ∈ (𝑋 / ))
4126, 40eqeltrd 2850 . . . . . . . . 9 ((𝜑𝑢𝐻𝑠𝑋) → (𝑢 · [𝑠] ) ∈ (𝑋 / ))
42413expa 1111 . . . . . . . 8 (((𝜑𝑢𝐻) ∧ 𝑠𝑋) → (𝑢 · [𝑠] ) ∈ (𝑋 / ))
4322, 24, 42ectocld 7966 . . . . . . 7 (((𝜑𝑢𝐻) ∧ 𝑣 ∈ (𝑋 / )) → (𝑢 · 𝑣) ∈ (𝑋 / ))
4443ralrimiva 3115 . . . . . 6 ((𝜑𝑢𝐻) → ∀𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / ))
4544ralrimiva 3115 . . . . 5 (𝜑 → ∀𝑢𝐻𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / ))
46 ffnov 6911 . . . . 5 ( · :(𝐻 × (𝑋 / ))⟶(𝑋 / ) ↔ ( · Fn (𝐻 × (𝑋 / )) ∧ ∀𝑢𝐻𝑣 ∈ (𝑋 / )(𝑢 · 𝑣) ∈ (𝑋 / )))
4721, 45, 46sylanbrc 572 . . . 4 (𝜑· :(𝐻 × (𝑋 / ))⟶(𝑋 / ))
482subgbas 17806 . . . . . . 7 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
491, 48syl 17 . . . . . 6 (𝜑𝐻 = (Base‘(𝐺s 𝐻)))
5049xpeq1d 5278 . . . . 5 (𝜑 → (𝐻 × (𝑋 / )) = ((Base‘(𝐺s 𝐻)) × (𝑋 / )))
5150feq2d 6171 . . . 4 (𝜑 → ( · :(𝐻 × (𝑋 / ))⟶(𝑋 / ) ↔ · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / )))
5247, 51mpbid 222 . . 3 (𝜑· :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ))
53 oveq2 6801 . . . . . . 7 ([𝑠] = 𝑢 → ((0g‘(𝐺s 𝐻)) · [𝑠] ) = ((0g‘(𝐺s 𝐻)) · 𝑢))
54 id 22 . . . . . . 7 ([𝑠] = 𝑢 → [𝑠] = 𝑢)
5553, 54eqeq12d 2786 . . . . . 6 ([𝑠] = 𝑢 → (((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ↔ ((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢))
56 oveq2 6801 . . . . . . . 8 ([𝑠] = 𝑢 → ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = ((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢))
57 oveq2 6801 . . . . . . . . 9 ([𝑠] = 𝑢 → (𝑏 · [𝑠] ) = (𝑏 · 𝑢))
5857oveq2d 6809 . . . . . . . 8 ([𝑠] = 𝑢 → (𝑎 · (𝑏 · [𝑠] )) = (𝑎 · (𝑏 · 𝑢)))
5956, 58eqeq12d 2786 . . . . . . 7 ([𝑠] = 𝑢 → (((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
60592ralbidv 3138 . . . . . 6 ([𝑠] = 𝑢 → (∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
6155, 60anbi12d 616 . . . . 5 ([𝑠] = 𝑢 → ((((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))) ↔ (((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢)))))
62 simpl 468 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝜑)
631adantr 466 . . . . . . . . 9 ((𝜑𝑠𝑋) → 𝐻 ∈ (SubGrp‘𝐺))
64 eqid 2771 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
6564subg0cl 17810 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
6663, 65syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → (0g𝐺) ∈ 𝐻)
67 simpr 471 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝑠𝑋)
689, 5, 1, 8, 25, 10, 16sylow2blem1 18242 . . . . . . . 8 ((𝜑 ∧ (0g𝐺) ∈ 𝐻𝑠𝑋) → ((0g𝐺) · [𝑠] ) = [((0g𝐺) + 𝑠)] )
6962, 66, 67, 68syl3anc 1476 . . . . . . 7 ((𝜑𝑠𝑋) → ((0g𝐺) · [𝑠] ) = [((0g𝐺) + 𝑠)] )
702, 64subg0 17808 . . . . . . . . 9 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g‘(𝐺s 𝐻)))
7163, 70syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → (0g𝐺) = (0g‘(𝐺s 𝐻)))
7271oveq1d 6808 . . . . . . 7 ((𝜑𝑠𝑋) → ((0g𝐺) · [𝑠] ) = ((0g‘(𝐺s 𝐻)) · [𝑠] ))
739, 25, 64grplid 17660 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑠𝑋) → ((0g𝐺) + 𝑠) = 𝑠)
7430, 73sylan 569 . . . . . . . 8 ((𝜑𝑠𝑋) → ((0g𝐺) + 𝑠) = 𝑠)
7574eceq1d 7935 . . . . . . 7 ((𝜑𝑠𝑋) → [((0g𝐺) + 𝑠)] = [𝑠] )
7669, 72, 753eqtr3d 2813 . . . . . 6 ((𝜑𝑠𝑋) → ((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] )
7763adantr 466 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐻 ∈ (SubGrp‘𝐺))
7877, 29syl 17 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐺 ∈ Grp)
7977, 32syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝐻𝑋)
80 simprl 754 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑎𝐻)
8179, 80sseldd 3753 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑎𝑋)
82 simprr 756 . . . . . . . . . . . . 13 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑏𝐻)
8379, 82sseldd 3753 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑏𝑋)
8467adantr 466 . . . . . . . . . . . 12 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝑠𝑋)
859, 25grpass 17639 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋𝑠𝑋)) → ((𝑎 + 𝑏) + 𝑠) = (𝑎 + (𝑏 + 𝑠)))
8678, 81, 83, 84, 85syl13anc 1478 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) + 𝑠) = (𝑎 + (𝑏 + 𝑠)))
8786eceq1d 7935 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → [((𝑎 + 𝑏) + 𝑠)] = [(𝑎 + (𝑏 + 𝑠))] )
8862adantr 466 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → 𝜑)
899, 25grpcl 17638 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑠𝑋) → (𝑏 + 𝑠) ∈ 𝑋)
9078, 83, 84, 89syl3anc 1476 . . . . . . . . . . 11 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑏 + 𝑠) ∈ 𝑋)
919, 5, 1, 8, 25, 10, 16sylow2blem1 18242 . . . . . . . . . . 11 ((𝜑𝑎𝐻 ∧ (𝑏 + 𝑠) ∈ 𝑋) → (𝑎 · [(𝑏 + 𝑠)] ) = [(𝑎 + (𝑏 + 𝑠))] )
9288, 80, 90, 91syl3anc 1476 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 · [(𝑏 + 𝑠)] ) = [(𝑎 + (𝑏 + 𝑠))] )
9387, 92eqtr4d 2808 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → [((𝑎 + 𝑏) + 𝑠)] = (𝑎 · [(𝑏 + 𝑠)] ))
9425subgcl 17812 . . . . . . . . . . 11 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑎𝐻𝑏𝐻) → (𝑎 + 𝑏) ∈ 𝐻)
9577, 80, 82, 94syl3anc 1476 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 + 𝑏) ∈ 𝐻)
969, 5, 1, 8, 25, 10, 16sylow2blem1 18242 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 + 𝑏) ∈ 𝐻𝑠𝑋) → ((𝑎 + 𝑏) · [𝑠] ) = [((𝑎 + 𝑏) + 𝑠)] )
9788, 95, 84, 96syl3anc 1476 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) · [𝑠] ) = [((𝑎 + 𝑏) + 𝑠)] )
989, 5, 1, 8, 25, 10, 16sylow2blem1 18242 . . . . . . . . . . 11 ((𝜑𝑏𝐻𝑠𝑋) → (𝑏 · [𝑠] ) = [(𝑏 + 𝑠)] )
9988, 82, 84, 98syl3anc 1476 . . . . . . . . . 10 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑏 · [𝑠] ) = [(𝑏 + 𝑠)] )
10099oveq2d 6809 . . . . . . . . 9 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → (𝑎 · (𝑏 · [𝑠] )) = (𝑎 · [(𝑏 + 𝑠)] ))
10193, 97, 1003eqtr4d 2815 . . . . . . . 8 (((𝜑𝑠𝑋) ∧ (𝑎𝐻𝑏𝐻)) → ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
102101ralrimivva 3120 . . . . . . 7 ((𝜑𝑠𝑋) → ∀𝑎𝐻𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
10363, 48syl 17 . . . . . . . 8 ((𝜑𝑠𝑋) → 𝐻 = (Base‘(𝐺s 𝐻)))
1042, 25ressplusg 16201 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → + = (+g‘(𝐺s 𝐻)))
1051, 104syl 17 . . . . . . . . . . . 12 (𝜑+ = (+g‘(𝐺s 𝐻)))
106105oveqdr 6819 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → (𝑎 + 𝑏) = (𝑎(+g‘(𝐺s 𝐻))𝑏))
107106oveq1d 6808 . . . . . . . . . 10 ((𝜑𝑠𝑋) → ((𝑎 + 𝑏) · [𝑠] ) = ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ))
108107eqeq1d 2773 . . . . . . . . 9 ((𝜑𝑠𝑋) → (((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
109103, 108raleqbidv 3301 . . . . . . . 8 ((𝜑𝑠𝑋) → (∀𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
110103, 109raleqbidv 3301 . . . . . . 7 ((𝜑𝑠𝑋) → (∀𝑎𝐻𝑏𝐻 ((𝑎 + 𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )) ↔ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
111102, 110mpbid 222 . . . . . 6 ((𝜑𝑠𝑋) → ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] )))
11276, 111jca 501 . . . . 5 ((𝜑𝑠𝑋) → (((0g‘(𝐺s 𝐻)) · [𝑠] ) = [𝑠] ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · [𝑠] ) = (𝑎 · (𝑏 · [𝑠] ))))
11322, 61, 112ectocld 7966 . . . 4 ((𝜑𝑢 ∈ (𝑋 / )) → (((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
114113ralrimiva 3115 . . 3 (𝜑 → ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))
11552, 114jca 501 . 2 (𝜑 → ( · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ) ∧ ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢)))))
116 eqid 2771 . . 3 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
117 eqid 2771 . . 3 (+g‘(𝐺s 𝐻)) = (+g‘(𝐺s 𝐻))
118 eqid 2771 . . 3 (0g‘(𝐺s 𝐻)) = (0g‘(𝐺s 𝐻))
119116, 117, 118isga 17931 . 2 ( · ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )) ↔ (((𝐺s 𝐻) ∈ Grp ∧ (𝑋 / ) ∈ V) ∧ ( · :((Base‘(𝐺s 𝐻)) × (𝑋 / ))⟶(𝑋 / ) ∧ ∀𝑢 ∈ (𝑋 / )(((0g‘(𝐺s 𝐻)) · 𝑢) = 𝑢 ∧ ∀𝑎 ∈ (Base‘(𝐺s 𝐻))∀𝑏 ∈ (Base‘(𝐺s 𝐻))((𝑎(+g‘(𝐺s 𝐻))𝑏) · 𝑢) = (𝑎 · (𝑏 · 𝑢))))))
12015, 115, 119sylanbrc 572 1 (𝜑· ∈ ((𝐺s 𝐻) GrpAct (𝑋 / )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  wss 3723  𝒫 cpw 4297  cmpt 4863   × cxp 5247  ran crn 5250   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795   Er wer 7893  [cec 7894   / cqs 7895  Fincfn 8109  Basecbs 16064  s cress 16065  +gcplusg 16149  0gc0g 16308  Grpcgrp 17630  SubGrpcsubg 17796   ~QG cqg 17798   GrpAct cga 17929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-eqg 17801  df-ga 17930
This theorem is referenced by:  sylow2blem3  18244
  Copyright terms: Public domain W3C validator