MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfr Structured version   Visualization version   GIF version

Theorem pi1xfr 24316
Description: Given a path 𝐹 and its inverse 𝐼 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pi1xfr (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Distinct variable groups:   𝑥,𝑔,𝐵   𝑔,𝐹,𝑥   𝑔,𝐼,𝑥   𝜑,𝑔,𝑥   𝑔,𝐽,𝑥   𝑃,𝑔,𝑥   𝑄,𝑔,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝑋(𝑥,𝑔)

Proof of Theorem pi1xfr
Dummy variables 𝑓 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iitopon 24140 . . . . 5 II ∈ (TopOn‘(0[,]1))
3 pi1xfr.f . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
4 cnf2 22498 . . . . 5 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
52, 1, 3, 4mp3an2i 1465 . . . 4 (𝜑𝐹:(0[,]1)⟶𝑋)
6 0elunit 13294 . . . 4 0 ∈ (0[,]1)
7 ffvelcdm 7009 . . . 4 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
85, 6, 7sylancl 586 . . 3 (𝜑 → (𝐹‘0) ∈ 𝑋)
9 pi1xfr.p . . . 4 𝑃 = (𝐽 π1 (𝐹‘0))
109pi1grp 24311 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘0) ∈ 𝑋) → 𝑃 ∈ Grp)
111, 8, 10syl2anc 584 . 2 (𝜑𝑃 ∈ Grp)
12 1elunit 13295 . . . 4 1 ∈ (0[,]1)
13 ffvelcdm 7009 . . . 4 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
145, 12, 13sylancl 586 . . 3 (𝜑 → (𝐹‘1) ∈ 𝑋)
15 pi1xfr.q . . . 4 𝑄 = (𝐽 π1 (𝐹‘1))
1615pi1grp 24311 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘1) ∈ 𝑋) → 𝑄 ∈ Grp)
171, 14, 16syl2anc 584 . 2 (𝜑𝑄 ∈ Grp)
18 pi1xfr.b . . . 4 𝐵 = (Base‘𝑃)
19 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
20 pi1xfr.i . . . . . . 7 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
2120pcorevcl 24286 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
223, 21syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
2322simp1d 1141 . . . 4 (𝜑𝐼 ∈ (II Cn 𝐽))
2422simp2d 1142 . . . . 5 (𝜑 → (𝐼‘0) = (𝐹‘1))
2524eqcomd 2742 . . . 4 (𝜑 → (𝐹‘1) = (𝐼‘0))
2622simp3d 1143 . . . 4 (𝜑 → (𝐼‘1) = (𝐹‘0))
279, 15, 18, 19, 1, 3, 23, 25, 26pi1xfrf 24314 . . 3 (𝜑𝐺:𝐵⟶(Base‘𝑄))
2818a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑃))
299, 1, 8, 28pi1bas2 24302 . . . . . . 7 (𝜑𝐵 = ( 𝐵 / ( ≃ph𝐽)))
3029eleq2d 2822 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ ( 𝐵 / ( ≃ph𝐽))))
3130biimpa 477 . . . . 5 ((𝜑𝑦𝐵) → 𝑦 ∈ ( 𝐵 / ( ≃ph𝐽)))
32 eqid 2736 . . . . . 6 ( 𝐵 / ( ≃ph𝐽)) = ( 𝐵 / ( ≃ph𝐽))
33 fvoveq1 7352 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = (𝐺‘(𝑦(+g𝑃)𝑧)))
34 fveq2 6819 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph𝐽)) = (𝐺𝑦))
3534oveq1d 7344 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
3633, 35eqeq12d 2752 . . . . . . 7 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3736ralbidv 3170 . . . . . 6 ([𝑓]( ≃ph𝐽) = 𝑦 → (∀𝑧𝐵 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3829eleq2d 2822 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ ( 𝐵 / ( ≃ph𝐽))))
3938biimpa 477 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽)))
4039adantlr 712 . . . . . . . 8 (((𝜑𝑓 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽)))
41 oveq2 7337 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧))
4241fveq2d 6823 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)))
43 fveq2 6819 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘[]( ≃ph𝐽)) = (𝐺𝑧))
4443oveq2d 7345 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
4542, 44eqeq12d 2752 . . . . . . . . 9 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) ↔ (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
46 phtpcer 24256 . . . . . . . . . . . . . 14 ( ≃ph𝐽) Er (II Cn 𝐽)
4746a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
489, 1, 8, 28pi1eluni 24303 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑓 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0))))
4948biimpa 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0)))
5049simp1d 1141 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵) → 𝑓 ∈ (II Cn 𝐽))
51503adant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → 𝑓 ∈ (II Cn 𝐽))
529, 1, 8, 28pi1eluni 24303 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ( 𝐵 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0))))
5352adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → ( 𝐵 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0))))
5453biimp3a 1468 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0)))
5554simp1d 1141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → ∈ (II Cn 𝐽))
5651, 55pco0 24275 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘0) = (𝑓‘0))
5749simp2d 1142 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵) → (𝑓‘0) = (𝐹‘0))
58573adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘0) = (𝐹‘0))
5956, 58eqtrd 2776 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0))
6049simp3d 1143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → (𝑓‘1) = (𝐹‘0))
61603adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (𝐹‘0))
6254simp2d 1142 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (‘0) = (𝐹‘0))
6361, 62eqtr4d 2779 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (‘0))
6451, 55, 63pcocn 24278 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽))
6533ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → 𝐹 ∈ (II Cn 𝐽))
6664, 65pco0 24275 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)‘0) = ((𝑓(*𝑝𝐽))‘0))
67263ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (𝐹‘0))
6859, 66, 673eqtr4rd 2787 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)‘0))
69233ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → 𝐼 ∈ (II Cn 𝐽))
7047, 69erref 8581 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → 𝐼( ≃ph𝐽)𝐼)
7154simp3d 1143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (‘1) = (𝐹‘0))
72 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
7351, 55, 65, 63, 71, 72pcoass 24285 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)( ≃ph𝐽)(𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹)))
7455, 65pco0 24275 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘0) = (‘0))
7563, 74eqtr4d 2779 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (((*𝑝𝐽)𝐹)‘0))
7647, 51erref 8581 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → 𝑓( ≃ph𝐽)𝑓)
7765, 69pco1 24276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
7862, 74, 673eqtr4rd 2787 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (((*𝑝𝐽)𝐹)‘0))
7977, 78eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (((*𝑝𝐽)𝐹)‘0))
80 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
8120, 80pcorev2 24289 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
8265, 81syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
8355, 65, 71pcocn 24278 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
8447, 83erref 8581 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹)( ≃ph𝐽)((*𝑝𝐽)𝐹))
8579, 82, 84pcohtpy 24281 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹)))
8674, 62eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘0) = (𝐹‘0))
8780pcopt 24283 . . . . . . . . . . . . . . . . . . . . 21 ((((*𝑝𝐽)𝐹) ∈ (II Cn 𝐽) ∧ (((*𝑝𝐽)𝐹)‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
8883, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
8947, 85, 88ertrd 8577 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
90243ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘0) = (𝐹‘1))
9190eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) = (𝐼‘0))
9265, 69, 83, 91, 78, 72pcoass 24285 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
9347, 89, 92ertr3d 8579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
9475, 76, 93pcohtpy 24281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(𝑓(*𝑝𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
9569, 83, 78pcocn 24278 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
9669, 83pco0 24275 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
9796, 90eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
9897eqcomd 2742 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0))
9951, 65, 95, 61, 98, 72pcoass 24285 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))( ≃ph𝐽)(𝑓(*𝑝𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
10047, 94, 99ertr4d 8580 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
10147, 73, 100ertrd 8577 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)( ≃ph𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
10268, 70, 101pcohtpy 24281 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
1033adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → 𝐹 ∈ (II Cn 𝐽))
10450, 103, 60pcocn 24278 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝑓(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
1051043adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
10650, 103pco0 24275 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘0) = (𝑓‘0))
10726adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → (𝐼‘1) = (𝐹‘0))
10857, 106, 1073eqtr4rd 2787 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝐼‘1) = ((𝑓(*𝑝𝐽)𝐹)‘0))
1091083adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = ((𝑓(*𝑝𝐽)𝐹)‘0))
11051, 65pco1 24276 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
111110, 97eqtr4d 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0))
11269, 105, 95, 109, 111, 72pcoass 24285 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
11347, 102, 112ertr4d 8580 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
11447, 113erthi 8612 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → [(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))]( ≃ph𝐽))
11513ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
11651, 55pco1 24276 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘1) = (‘1))
117116, 71eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))
1189, 1, 8, 28pi1eluni 24303 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑓(*𝑝𝐽)) ∈ 𝐵 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))))
1191183ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)) ∈ 𝐵 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))))
12064, 59, 117, 119mpbir3and 1341 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)) ∈ 𝐵)
1219, 15, 18, 19, 115, 65, 69, 91, 67, 120pi1xfrval 24315 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))]( ≃ph𝐽))
122 eqid 2736 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘𝑄)
123143ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) ∈ 𝑋)
124 eqid 2736 . . . . . . . . . . . . 13 (+g𝑄) = (+g𝑄)
12523adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → 𝐼 ∈ (II Cn 𝐽))
126125, 104, 108pcocn 24278 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
1271263adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
128125, 104pco0 24275 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
12924adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝐼‘0) = (𝐹‘1))
130128, 129eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
1311303adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
132125, 104pco1 24276 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = ((𝑓(*𝑝𝐽)𝐹)‘1))
13350, 103pco1 24276 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
134132, 133eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
1351343adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
136 eqidd 2737 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (Base‘𝑄) = (Base‘𝑄))
13715, 115, 123, 136pi1eluni 24303 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
138127, 131, 135, 137mpbir3and 1341 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
13969, 83pco1 24276 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (((*𝑝𝐽)𝐹)‘1))
14055, 65pco1 24276 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
141139, 140eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
14215, 115, 123, 136pi1eluni 24303 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
14395, 97, 141, 142mpbir3and 1341 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
14415, 122, 115, 123, 124, 138, 143pi1addval 24309 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)) = [((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))]( ≃ph𝐽))
145114, 121, 1443eqtr4d 2786 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)))
14683ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘0) ∈ 𝑋)
147 eqid 2736 . . . . . . . . . . . . 13 (+g𝑃) = (+g𝑃)
148 simp2 1136 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝑓 𝐵)
149 simp3 1137 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝐵)
1509, 18, 115, 146, 147, 148, 149pi1addval 24309 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = [(𝑓(*𝑝𝐽))]( ≃ph𝐽))
151150fveq2d 6823 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)))
1521adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
15325adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → (𝐹‘1) = (𝐼‘0))
154 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → 𝑓 𝐵)
1559, 15, 18, 19, 152, 103, 125, 153, 107, 154pi1xfrval 24315 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽))
1561553adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽))
1579, 15, 18, 19, 115, 65, 69, 91, 67, 149pi1xfrval 24315 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽))
158156, 157oveq12d 7347 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)))
159145, 151, 1583eqtr4d 2786 . . . . . . . . . 10 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
1601593expa 1117 . . . . . . . . 9 (((𝜑𝑓 𝐵) ∧ 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
16132, 45, 160ectocld 8636 . . . . . . . 8 (((𝜑𝑓 𝐵) ∧ 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽))) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
16240, 161syldan 591 . . . . . . 7 (((𝜑𝑓 𝐵) ∧ 𝑧𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
163162ralrimiva 3139 . . . . . 6 ((𝜑𝑓 𝐵) → ∀𝑧𝐵 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
16432, 37, 163ectocld 8636 . . . . 5 ((𝜑𝑦 ∈ ( 𝐵 / ( ≃ph𝐽))) → ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
16531, 164syldan 591 . . . 4 ((𝜑𝑦𝐵) → ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
166165ralrimiva 3139 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
16727, 166jca 512 . 2 (𝜑 → (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
16818, 122, 147, 124isghm 18922 . 2 (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))))
16911, 17, 167, 168syl21anbrc 1343 1 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  ifcif 4472  {csn 4572  cop 4578   cuni 4851   class class class wbr 5089  cmpt 5172   × cxp 5612  ran crn 5615  wf 6469  cfv 6473  (class class class)co 7329   Er wer 8558  [cec 8559   / cqs 8560  0cc0 10964  1c1 10965   + caddc 10967   · cmul 10969  cle 11103  cmin 11298   / cdiv 11725  2c2 12121  4c4 12123  [,]cicc 13175  Basecbs 17001  +gcplusg 17051  Grpcgrp 18665   GrpHom cghm 18919  TopOnctopon 22157   Cn ccn 22473  IIcii 24136  phcphtpc 24230  *𝑝cpco 24261   π1 cpi1 24264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-er 8561  df-ec 8563  df-qs 8567  df-map 8680  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-fi 9260  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-ioo 13176  df-icc 13179  df-fz 13333  df-fzo 13476  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-hom 17075  df-cco 17076  df-rest 17222  df-topn 17223  df-0g 17241  df-gsum 17242  df-topgen 17243  df-pt 17244  df-prds 17247  df-xrs 17302  df-qtop 17307  df-imas 17308  df-qus 17309  df-xps 17310  df-mre 17384  df-mrc 17385  df-acs 17387  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-submnd 18520  df-grp 18668  df-mulg 18789  df-ghm 18920  df-cntz 19011  df-cmn 19475  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-cnfld 20696  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cld 22268  df-cn 22476  df-cnp 22477  df-tx 22811  df-hmeo 23004  df-xms 23571  df-ms 23572  df-tms 23573  df-ii 24138  df-htpy 24231  df-phtpy 24232  df-phtpc 24253  df-pco 24266  df-om1 24267  df-pi1 24269
This theorem is referenced by:  pi1xfrcnv  24318  pi1xfrgim  24319
  Copyright terms: Public domain W3C validator