MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfr Structured version   Visualization version   GIF version

Theorem pi1xfr 24124
Description: Given a path 𝐹 and its inverse 𝐼 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pi1xfr (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Distinct variable groups:   𝑥,𝑔,𝐵   𝑔,𝐹,𝑥   𝑔,𝐼,𝑥   𝜑,𝑔,𝑥   𝑔,𝐽,𝑥   𝑃,𝑔,𝑥   𝑄,𝑔,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝑋(𝑥,𝑔)

Proof of Theorem pi1xfr
Dummy variables 𝑓 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iitopon 23948 . . . . 5 II ∈ (TopOn‘(0[,]1))
3 pi1xfr.f . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
4 cnf2 22308 . . . . 5 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
52, 1, 3, 4mp3an2i 1464 . . . 4 (𝜑𝐹:(0[,]1)⟶𝑋)
6 0elunit 13130 . . . 4 0 ∈ (0[,]1)
7 ffvelrn 6941 . . . 4 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
85, 6, 7sylancl 585 . . 3 (𝜑 → (𝐹‘0) ∈ 𝑋)
9 pi1xfr.p . . . 4 𝑃 = (𝐽 π1 (𝐹‘0))
109pi1grp 24119 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘0) ∈ 𝑋) → 𝑃 ∈ Grp)
111, 8, 10syl2anc 583 . 2 (𝜑𝑃 ∈ Grp)
12 1elunit 13131 . . . 4 1 ∈ (0[,]1)
13 ffvelrn 6941 . . . 4 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
145, 12, 13sylancl 585 . . 3 (𝜑 → (𝐹‘1) ∈ 𝑋)
15 pi1xfr.q . . . 4 𝑄 = (𝐽 π1 (𝐹‘1))
1615pi1grp 24119 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘1) ∈ 𝑋) → 𝑄 ∈ Grp)
171, 14, 16syl2anc 583 . 2 (𝜑𝑄 ∈ Grp)
18 pi1xfr.b . . . 4 𝐵 = (Base‘𝑃)
19 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
20 pi1xfr.i . . . . . . 7 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
2120pcorevcl 24094 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
223, 21syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
2322simp1d 1140 . . . 4 (𝜑𝐼 ∈ (II Cn 𝐽))
2422simp2d 1141 . . . . 5 (𝜑 → (𝐼‘0) = (𝐹‘1))
2524eqcomd 2744 . . . 4 (𝜑 → (𝐹‘1) = (𝐼‘0))
2622simp3d 1142 . . . 4 (𝜑 → (𝐼‘1) = (𝐹‘0))
279, 15, 18, 19, 1, 3, 23, 25, 26pi1xfrf 24122 . . 3 (𝜑𝐺:𝐵⟶(Base‘𝑄))
2818a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑃))
299, 1, 8, 28pi1bas2 24110 . . . . . . 7 (𝜑𝐵 = ( 𝐵 / ( ≃ph𝐽)))
3029eleq2d 2824 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ ( 𝐵 / ( ≃ph𝐽))))
3130biimpa 476 . . . . 5 ((𝜑𝑦𝐵) → 𝑦 ∈ ( 𝐵 / ( ≃ph𝐽)))
32 eqid 2738 . . . . . 6 ( 𝐵 / ( ≃ph𝐽)) = ( 𝐵 / ( ≃ph𝐽))
33 fvoveq1 7278 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = (𝐺‘(𝑦(+g𝑃)𝑧)))
34 fveq2 6756 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph𝐽)) = (𝐺𝑦))
3534oveq1d 7270 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
3633, 35eqeq12d 2754 . . . . . . 7 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3736ralbidv 3120 . . . . . 6 ([𝑓]( ≃ph𝐽) = 𝑦 → (∀𝑧𝐵 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3829eleq2d 2824 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ ( 𝐵 / ( ≃ph𝐽))))
3938biimpa 476 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽)))
4039adantlr 711 . . . . . . . 8 (((𝜑𝑓 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽)))
41 oveq2 7263 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧))
4241fveq2d 6760 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)))
43 fveq2 6756 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘[]( ≃ph𝐽)) = (𝐺𝑧))
4443oveq2d 7271 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
4542, 44eqeq12d 2754 . . . . . . . . 9 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) ↔ (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
46 phtpcer 24064 . . . . . . . . . . . . . 14 ( ≃ph𝐽) Er (II Cn 𝐽)
4746a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
489, 1, 8, 28pi1eluni 24111 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑓 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0))))
4948biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0)))
5049simp1d 1140 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵) → 𝑓 ∈ (II Cn 𝐽))
51503adant3 1130 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → 𝑓 ∈ (II Cn 𝐽))
529, 1, 8, 28pi1eluni 24111 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ( 𝐵 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0))))
5352adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → ( 𝐵 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0))))
5453biimp3a 1467 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0)))
5554simp1d 1140 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → ∈ (II Cn 𝐽))
5651, 55pco0 24083 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘0) = (𝑓‘0))
5749simp2d 1141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵) → (𝑓‘0) = (𝐹‘0))
58573adant3 1130 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘0) = (𝐹‘0))
5956, 58eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0))
6049simp3d 1142 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → (𝑓‘1) = (𝐹‘0))
61603adant3 1130 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (𝐹‘0))
6254simp2d 1141 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (‘0) = (𝐹‘0))
6361, 62eqtr4d 2781 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (‘0))
6451, 55, 63pcocn 24086 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽))
6533ad2ant1 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → 𝐹 ∈ (II Cn 𝐽))
6664, 65pco0 24083 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)‘0) = ((𝑓(*𝑝𝐽))‘0))
67263ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (𝐹‘0))
6859, 66, 673eqtr4rd 2789 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)‘0))
69233ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → 𝐼 ∈ (II Cn 𝐽))
7047, 69erref 8476 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → 𝐼( ≃ph𝐽)𝐼)
7154simp3d 1142 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (‘1) = (𝐹‘0))
72 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
7351, 55, 65, 63, 71, 72pcoass 24093 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)( ≃ph𝐽)(𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹)))
7455, 65pco0 24083 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘0) = (‘0))
7563, 74eqtr4d 2781 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (((*𝑝𝐽)𝐹)‘0))
7647, 51erref 8476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → 𝑓( ≃ph𝐽)𝑓)
7765, 69pco1 24084 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
7862, 74, 673eqtr4rd 2789 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (((*𝑝𝐽)𝐹)‘0))
7977, 78eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (((*𝑝𝐽)𝐹)‘0))
80 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
8120, 80pcorev2 24097 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
8265, 81syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
8355, 65, 71pcocn 24086 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
8447, 83erref 8476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹)( ≃ph𝐽)((*𝑝𝐽)𝐹))
8579, 82, 84pcohtpy 24089 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹)))
8674, 62eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘0) = (𝐹‘0))
8780pcopt 24091 . . . . . . . . . . . . . . . . . . . . 21 ((((*𝑝𝐽)𝐹) ∈ (II Cn 𝐽) ∧ (((*𝑝𝐽)𝐹)‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
8883, 86, 87syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
8947, 85, 88ertrd 8472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
90243ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘0) = (𝐹‘1))
9190eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) = (𝐼‘0))
9265, 69, 83, 91, 78, 72pcoass 24093 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
9347, 89, 92ertr3d 8474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
9475, 76, 93pcohtpy 24089 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(𝑓(*𝑝𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
9569, 83, 78pcocn 24086 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
9669, 83pco0 24083 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
9796, 90eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
9897eqcomd 2744 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0))
9951, 65, 95, 61, 98, 72pcoass 24093 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))( ≃ph𝐽)(𝑓(*𝑝𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
10047, 94, 99ertr4d 8475 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
10147, 73, 100ertrd 8472 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)( ≃ph𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
10268, 70, 101pcohtpy 24089 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
1033adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → 𝐹 ∈ (II Cn 𝐽))
10450, 103, 60pcocn 24086 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝑓(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
1051043adant3 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
10650, 103pco0 24083 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘0) = (𝑓‘0))
10726adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → (𝐼‘1) = (𝐹‘0))
10857, 106, 1073eqtr4rd 2789 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝐼‘1) = ((𝑓(*𝑝𝐽)𝐹)‘0))
1091083adant3 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = ((𝑓(*𝑝𝐽)𝐹)‘0))
11051, 65pco1 24084 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
111110, 97eqtr4d 2781 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0))
11269, 105, 95, 109, 111, 72pcoass 24093 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
11347, 102, 112ertr4d 8475 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
11447, 113erthi 8507 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → [(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))]( ≃ph𝐽))
11513ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
11651, 55pco1 24084 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘1) = (‘1))
117116, 71eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))
1189, 1, 8, 28pi1eluni 24111 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑓(*𝑝𝐽)) ∈ 𝐵 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))))
1191183ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)) ∈ 𝐵 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))))
12064, 59, 117, 119mpbir3and 1340 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)) ∈ 𝐵)
1219, 15, 18, 19, 115, 65, 69, 91, 67, 120pi1xfrval 24123 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))]( ≃ph𝐽))
122 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘𝑄)
123143ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) ∈ 𝑋)
124 eqid 2738 . . . . . . . . . . . . 13 (+g𝑄) = (+g𝑄)
12523adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → 𝐼 ∈ (II Cn 𝐽))
126125, 104, 108pcocn 24086 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
1271263adant3 1130 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
128125, 104pco0 24083 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
12924adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝐼‘0) = (𝐹‘1))
130128, 129eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
1311303adant3 1130 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
132125, 104pco1 24084 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = ((𝑓(*𝑝𝐽)𝐹)‘1))
13350, 103pco1 24084 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
134132, 133eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
1351343adant3 1130 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
136 eqidd 2739 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (Base‘𝑄) = (Base‘𝑄))
13715, 115, 123, 136pi1eluni 24111 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
138127, 131, 135, 137mpbir3and 1340 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
13969, 83pco1 24084 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (((*𝑝𝐽)𝐹)‘1))
14055, 65pco1 24084 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
141139, 140eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
14215, 115, 123, 136pi1eluni 24111 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
14395, 97, 141, 142mpbir3and 1340 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
14415, 122, 115, 123, 124, 138, 143pi1addval 24117 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)) = [((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))]( ≃ph𝐽))
145114, 121, 1443eqtr4d 2788 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)))
14683ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘0) ∈ 𝑋)
147 eqid 2738 . . . . . . . . . . . . 13 (+g𝑃) = (+g𝑃)
148 simp2 1135 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝑓 𝐵)
149 simp3 1136 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝐵)
1509, 18, 115, 146, 147, 148, 149pi1addval 24117 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = [(𝑓(*𝑝𝐽))]( ≃ph𝐽))
151150fveq2d 6760 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)))
1521adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
15325adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → (𝐹‘1) = (𝐼‘0))
154 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → 𝑓 𝐵)
1559, 15, 18, 19, 152, 103, 125, 153, 107, 154pi1xfrval 24123 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽))
1561553adant3 1130 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽))
1579, 15, 18, 19, 115, 65, 69, 91, 67, 149pi1xfrval 24123 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽))
158156, 157oveq12d 7273 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)))
159145, 151, 1583eqtr4d 2788 . . . . . . . . . 10 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
1601593expa 1116 . . . . . . . . 9 (((𝜑𝑓 𝐵) ∧ 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
16132, 45, 160ectocld 8531 . . . . . . . 8 (((𝜑𝑓 𝐵) ∧ 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽))) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
16240, 161syldan 590 . . . . . . 7 (((𝜑𝑓 𝐵) ∧ 𝑧𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
163162ralrimiva 3107 . . . . . 6 ((𝜑𝑓 𝐵) → ∀𝑧𝐵 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
16432, 37, 163ectocld 8531 . . . . 5 ((𝜑𝑦 ∈ ( 𝐵 / ( ≃ph𝐽))) → ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
16531, 164syldan 590 . . . 4 ((𝜑𝑦𝐵) → ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
166165ralrimiva 3107 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
16727, 166jca 511 . 2 (𝜑 → (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
16818, 122, 147, 124isghm 18749 . 2 (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))))
16911, 17, 167, 168syl21anbrc 1342 1 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  ifcif 4456  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255   Er wer 8453  [cec 8454   / cqs 8455  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  4c4 11960  [,]cicc 13011  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492   GrpHom cghm 18746  TopOnctopon 21967   Cn ccn 22283  IIcii 23944  phcphtpc 24038  *𝑝cpco 24069   π1 cpi1 24072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-qus 17137  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-mulg 18616  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-ii 23946  df-htpy 24039  df-phtpy 24040  df-phtpc 24061  df-pco 24074  df-om1 24075  df-pi1 24077
This theorem is referenced by:  pi1xfrcnv  24126  pi1xfrgim  24127
  Copyright terms: Public domain W3C validator