MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup1 Structured version   Visualization version   GIF version

Theorem frgpup1 19296
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpup1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpup1
Dummy variables 𝑎 𝑢 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.x . 2 𝑋 = (Base‘𝐺)
2 frgpup.b . 2 𝐵 = (Base‘𝐻)
3 eqid 2738 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2738 . 2 (+g𝐻) = (+g𝐻)
5 frgpup.i . . 3 (𝜑𝐼𝑉)
6 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
76frgpgrp 19283 . . 3 (𝐼𝑉𝐺 ∈ Grp)
85, 7syl 17 . 2 (𝜑𝐺 ∈ Grp)
9 frgpup.h . 2 (𝜑𝐻 ∈ Grp)
10 frgpup.n . . 3 𝑁 = (invg𝐻)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
12 frgpup.a . . 3 (𝜑𝐹:𝐼𝐵)
13 frgpup.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
14 frgpup.r . . 3 = ( ~FG𝐼)
15 frgpup.e . . 3 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
162, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupf 19294 . 2 (𝜑𝐸:𝑋𝐵)
17 eqid 2738 . . . . . . . . . . 11 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
186, 17, 14frgpval 19279 . . . . . . . . . 10 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
195, 18syl 17 . . . . . . . . 9 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
20 2on 8275 . . . . . . . . . . . . 13 2o ∈ On
21 xpexg 7578 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
225, 20, 21sylancl 585 . . . . . . . . . . . 12 (𝜑 → (𝐼 × 2o) ∈ V)
23 wrdexg 14155 . . . . . . . . . . . 12 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
24 fvi 6826 . . . . . . . . . . . 12 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2613, 25eqtrid 2790 . . . . . . . . . 10 (𝜑𝑊 = Word (𝐼 × 2o))
27 eqid 2738 . . . . . . . . . . . 12 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
2817, 27frmdbas 18406 . . . . . . . . . . 11 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
2922, 28syl 17 . . . . . . . . . 10 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
3026, 29eqtr4d 2781 . . . . . . . . 9 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
3114fvexi 6770 . . . . . . . . . 10 ∈ V
3231a1i 11 . . . . . . . . 9 (𝜑 ∈ V)
33 fvexd 6771 . . . . . . . . 9 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
3419, 30, 32, 33qusbas 17173 . . . . . . . 8 (𝜑 → (𝑊 / ) = (Base‘𝐺))
351, 34eqtr4id 2798 . . . . . . 7 (𝜑𝑋 = (𝑊 / ))
36 eqimss 3973 . . . . . . 7 (𝑋 = (𝑊 / ) → 𝑋 ⊆ (𝑊 / ))
3735, 36syl 17 . . . . . 6 (𝜑𝑋 ⊆ (𝑊 / ))
3837adantr 480 . . . . 5 ((𝜑𝑎𝑋) → 𝑋 ⊆ (𝑊 / ))
3938sselda 3917 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → 𝑐 ∈ (𝑊 / ))
40 eqid 2738 . . . . 5 (𝑊 / ) = (𝑊 / )
41 oveq2 7263 . . . . . . 7 ([𝑢] = 𝑐 → (𝑎(+g𝐺)[𝑢] ) = (𝑎(+g𝐺)𝑐))
4241fveq2d 6760 . . . . . 6 ([𝑢] = 𝑐 → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)𝑐)))
43 fveq2 6756 . . . . . . 7 ([𝑢] = 𝑐 → (𝐸‘[𝑢] ) = (𝐸𝑐))
4443oveq2d 7271 . . . . . 6 ([𝑢] = 𝑐 → ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
4542, 44eqeq12d 2754 . . . . 5 ([𝑢] = 𝑐 → ((𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐))))
4637sselda 3917 . . . . . . . 8 ((𝜑𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
4746adantlr 711 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
48 fvoveq1 7278 . . . . . . . . 9 ([𝑡] = 𝑎 → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)[𝑢] )))
49 fveq2 6756 . . . . . . . . . 10 ([𝑡] = 𝑎 → (𝐸‘[𝑡] ) = (𝐸𝑎))
5049oveq1d 7270 . . . . . . . . 9 ([𝑡] = 𝑎 → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
5148, 50eqeq12d 2754 . . . . . . . 8 ([𝑡] = 𝑎 → ((𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] ))))
52 fviss 6827 . . . . . . . . . . . . . . . 16 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
5313, 52eqsstri 3951 . . . . . . . . . . . . . . 15 𝑊 ⊆ Word (𝐼 × 2o)
5453sseli 3913 . . . . . . . . . . . . . 14 (𝑡𝑊𝑡 ∈ Word (𝐼 × 2o))
5553sseli 3913 . . . . . . . . . . . . . 14 (𝑢𝑊𝑢 ∈ Word (𝐼 × 2o))
56 ccatcl 14205 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o)) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5754, 55, 56syl2an 595 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5813efgrcl 19236 . . . . . . . . . . . . . . 15 (𝑡𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝑡𝑊𝑢𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
6059simprd 495 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → 𝑊 = Word (𝐼 × 2o))
6157, 60eleqtrrd 2842 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ 𝑊)
622, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19295 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 ++ 𝑢) ∈ 𝑊) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6361, 62sylan2 592 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6454ad2antrl 724 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑡 ∈ Word (𝐼 × 2o))
6555ad2antll 725 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑢 ∈ Word (𝐼 × 2o))
662, 10, 11, 9, 5, 12frgpuptf 19291 . . . . . . . . . . . . . 14 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
6766adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑇:(𝐼 × 2o)⟶𝐵)
68 ccatco 14476 . . . . . . . . . . . . 13 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
6964, 65, 67, 68syl3anc 1369 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
7069oveq2d 7271 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))) = (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))))
719grpmndd 18504 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Mnd)
7271adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝐻 ∈ Mnd)
73 wrdco 14472 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑡) ∈ Word 𝐵)
7454, 66, 73syl2anr 596 . . . . . . . . . . . . 13 ((𝜑𝑡𝑊) → (𝑇𝑡) ∈ Word 𝐵)
7574adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑡) ∈ Word 𝐵)
76 wrdco 14472 . . . . . . . . . . . . 13 ((𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑢) ∈ Word 𝐵)
7765, 67, 76syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑢) ∈ Word 𝐵)
782, 4gsumccat 18395 . . . . . . . . . . . 12 ((𝐻 ∈ Mnd ∧ (𝑇𝑡) ∈ Word 𝐵 ∧ (𝑇𝑢) ∈ Word 𝐵) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
7972, 75, 77, 78syl3anc 1369 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8063, 70, 793eqtrd 2782 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8113, 6, 14, 3frgpadd 19284 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8281adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8382fveq2d 6760 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘[(𝑡 ++ 𝑢)] ))
842, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19295 . . . . . . . . . . . 12 ((𝜑𝑡𝑊) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
8584adantrr 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
862, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19295 . . . . . . . . . . . 12 ((𝜑𝑢𝑊) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8786adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8885, 87oveq12d 7273 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8980, 83, 883eqtr4d 2788 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9089anass1rs 651 . . . . . . . 8 (((𝜑𝑢𝑊) ∧ 𝑡𝑊) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9140, 51, 90ectocld 8531 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9247, 91syldan 590 . . . . . 6 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9392an32s 648 . . . . 5 (((𝜑𝑎𝑋) ∧ 𝑢𝑊) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9440, 45, 93ectocld 8531 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9539, 94syldan 590 . . 3 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9695anasss 466 . 2 ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
971, 2, 3, 4, 8, 9, 16, 96isghmd 18758 1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  cop 4564  cmpt 5153   I cid 5479   × cxp 5578  ran crn 5581  ccom 5584  Oncon0 6251  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  2oc2o 8261  [cec 8454   / cqs 8455  Word cword 14145   ++ cconcat 14201  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068   /s cqus 17133  Mndcmnd 18300  freeMndcfrmd 18401  Grpcgrp 18492  invgcminusg 18493   GrpHom cghm 18746   ~FG cefg 19227  freeGrpcfrgp 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-gsum 17070  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-frmd 18403  df-grp 18495  df-minusg 18496  df-ghm 18747  df-efg 19230  df-frgp 19231
This theorem is referenced by:  frgpup3lem  19298  frgpup3  19299
  Copyright terms: Public domain W3C validator