MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup1 Structured version   Visualization version   GIF version

Theorem frgpup1 19712
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpup1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpup1
Dummy variables 𝑎 𝑢 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.x . 2 𝑋 = (Base‘𝐺)
2 frgpup.b . 2 𝐵 = (Base‘𝐻)
3 eqid 2730 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2730 . 2 (+g𝐻) = (+g𝐻)
5 frgpup.i . . 3 (𝜑𝐼𝑉)
6 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
76frgpgrp 19699 . . 3 (𝐼𝑉𝐺 ∈ Grp)
85, 7syl 17 . 2 (𝜑𝐺 ∈ Grp)
9 frgpup.h . 2 (𝜑𝐻 ∈ Grp)
10 frgpup.n . . 3 𝑁 = (invg𝐻)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
12 frgpup.a . . 3 (𝜑𝐹:𝐼𝐵)
13 frgpup.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
14 frgpup.r . . 3 = ( ~FG𝐼)
15 frgpup.e . . 3 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
162, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupf 19710 . 2 (𝜑𝐸:𝑋𝐵)
17 eqid 2730 . . . . . . . . . . 11 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
186, 17, 14frgpval 19695 . . . . . . . . . 10 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
195, 18syl 17 . . . . . . . . 9 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
20 2on 8450 . . . . . . . . . . . . 13 2o ∈ On
21 xpexg 7729 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
225, 20, 21sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐼 × 2o) ∈ V)
23 wrdexg 14496 . . . . . . . . . . . 12 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
24 fvi 6940 . . . . . . . . . . . 12 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2613, 25eqtrid 2777 . . . . . . . . . 10 (𝜑𝑊 = Word (𝐼 × 2o))
27 eqid 2730 . . . . . . . . . . . 12 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
2817, 27frmdbas 18786 . . . . . . . . . . 11 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
2922, 28syl 17 . . . . . . . . . 10 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
3026, 29eqtr4d 2768 . . . . . . . . 9 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
3114fvexi 6875 . . . . . . . . . 10 ∈ V
3231a1i 11 . . . . . . . . 9 (𝜑 ∈ V)
33 fvexd 6876 . . . . . . . . 9 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
3419, 30, 32, 33qusbas 17515 . . . . . . . 8 (𝜑 → (𝑊 / ) = (Base‘𝐺))
351, 34eqtr4id 2784 . . . . . . 7 (𝜑𝑋 = (𝑊 / ))
36 eqimss 4008 . . . . . . 7 (𝑋 = (𝑊 / ) → 𝑋 ⊆ (𝑊 / ))
3735, 36syl 17 . . . . . 6 (𝜑𝑋 ⊆ (𝑊 / ))
3837adantr 480 . . . . 5 ((𝜑𝑎𝑋) → 𝑋 ⊆ (𝑊 / ))
3938sselda 3949 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → 𝑐 ∈ (𝑊 / ))
40 eqid 2730 . . . . 5 (𝑊 / ) = (𝑊 / )
41 oveq2 7398 . . . . . . 7 ([𝑢] = 𝑐 → (𝑎(+g𝐺)[𝑢] ) = (𝑎(+g𝐺)𝑐))
4241fveq2d 6865 . . . . . 6 ([𝑢] = 𝑐 → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)𝑐)))
43 fveq2 6861 . . . . . . 7 ([𝑢] = 𝑐 → (𝐸‘[𝑢] ) = (𝐸𝑐))
4443oveq2d 7406 . . . . . 6 ([𝑢] = 𝑐 → ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
4542, 44eqeq12d 2746 . . . . 5 ([𝑢] = 𝑐 → ((𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐))))
4637sselda 3949 . . . . . . . 8 ((𝜑𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
4746adantlr 715 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
48 fvoveq1 7413 . . . . . . . . 9 ([𝑡] = 𝑎 → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)[𝑢] )))
49 fveq2 6861 . . . . . . . . . 10 ([𝑡] = 𝑎 → (𝐸‘[𝑡] ) = (𝐸𝑎))
5049oveq1d 7405 . . . . . . . . 9 ([𝑡] = 𝑎 → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
5148, 50eqeq12d 2746 . . . . . . . 8 ([𝑡] = 𝑎 → ((𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] ))))
52 fviss 6941 . . . . . . . . . . . . . . . 16 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
5313, 52eqsstri 3996 . . . . . . . . . . . . . . 15 𝑊 ⊆ Word (𝐼 × 2o)
5453sseli 3945 . . . . . . . . . . . . . 14 (𝑡𝑊𝑡 ∈ Word (𝐼 × 2o))
5553sseli 3945 . . . . . . . . . . . . . 14 (𝑢𝑊𝑢 ∈ Word (𝐼 × 2o))
56 ccatcl 14546 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o)) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5754, 55, 56syl2an 596 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5813efgrcl 19652 . . . . . . . . . . . . . . 15 (𝑡𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝑡𝑊𝑢𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
6059simprd 495 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → 𝑊 = Word (𝐼 × 2o))
6157, 60eleqtrrd 2832 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ 𝑊)
622, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19711 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 ++ 𝑢) ∈ 𝑊) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6361, 62sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6454ad2antrl 728 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑡 ∈ Word (𝐼 × 2o))
6555ad2antll 729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑢 ∈ Word (𝐼 × 2o))
662, 10, 11, 9, 5, 12frgpuptf 19707 . . . . . . . . . . . . . 14 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
6766adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑇:(𝐼 × 2o)⟶𝐵)
68 ccatco 14808 . . . . . . . . . . . . 13 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
6964, 65, 67, 68syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
7069oveq2d 7406 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))) = (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))))
719grpmndd 18885 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Mnd)
7271adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝐻 ∈ Mnd)
73 wrdco 14804 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑡) ∈ Word 𝐵)
7454, 66, 73syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑡𝑊) → (𝑇𝑡) ∈ Word 𝐵)
7574adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑡) ∈ Word 𝐵)
76 wrdco 14804 . . . . . . . . . . . . 13 ((𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑢) ∈ Word 𝐵)
7765, 67, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑢) ∈ Word 𝐵)
782, 4gsumccat 18775 . . . . . . . . . . . 12 ((𝐻 ∈ Mnd ∧ (𝑇𝑡) ∈ Word 𝐵 ∧ (𝑇𝑢) ∈ Word 𝐵) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
7972, 75, 77, 78syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8063, 70, 793eqtrd 2769 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8113, 6, 14, 3frgpadd 19700 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8281adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8382fveq2d 6865 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘[(𝑡 ++ 𝑢)] ))
842, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19711 . . . . . . . . . . . 12 ((𝜑𝑡𝑊) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
8584adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
862, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19711 . . . . . . . . . . . 12 ((𝜑𝑢𝑊) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8786adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8885, 87oveq12d 7408 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8980, 83, 883eqtr4d 2775 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9089anass1rs 655 . . . . . . . 8 (((𝜑𝑢𝑊) ∧ 𝑡𝑊) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9140, 51, 90ectocld 8758 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9247, 91syldan 591 . . . . . 6 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9392an32s 652 . . . . 5 (((𝜑𝑎𝑋) ∧ 𝑢𝑊) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9440, 45, 93ectocld 8758 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9539, 94syldan 591 . . 3 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9695anasss 466 . 2 ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
971, 2, 3, 4, 8, 9, 16, 96isghmd 19164 1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  c0 4299  ifcif 4491  cop 4598  cmpt 5191   I cid 5535   × cxp 5639  ran crn 5642  ccom 5645  Oncon0 6335  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  2oc2o 8431  [cec 8672   / cqs 8673  Word cword 14485   ++ cconcat 14542  Basecbs 17186  +gcplusg 17227   Σg cgsu 17410   /s cqus 17475  Mndcmnd 18668  freeMndcfrmd 18781  Grpcgrp 18872  invgcminusg 18873   GrpHom cghm 19151   ~FG cefg 19643  freeGrpcfrgp 19644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-gsum 17412  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-frmd 18783  df-grp 18875  df-minusg 18876  df-ghm 19152  df-efg 19646  df-frgp 19647
This theorem is referenced by:  frgpup3lem  19714  frgpup3  19715
  Copyright terms: Public domain W3C validator