MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup1 Structured version   Visualization version   GIF version

Theorem frgpup1 19689
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpup1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpup1
Dummy variables 𝑎 𝑢 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.x . 2 𝑋 = (Base‘𝐺)
2 frgpup.b . 2 𝐵 = (Base‘𝐻)
3 eqid 2729 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2729 . 2 (+g𝐻) = (+g𝐻)
5 frgpup.i . . 3 (𝜑𝐼𝑉)
6 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
76frgpgrp 19676 . . 3 (𝐼𝑉𝐺 ∈ Grp)
85, 7syl 17 . 2 (𝜑𝐺 ∈ Grp)
9 frgpup.h . 2 (𝜑𝐻 ∈ Grp)
10 frgpup.n . . 3 𝑁 = (invg𝐻)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
12 frgpup.a . . 3 (𝜑𝐹:𝐼𝐵)
13 frgpup.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
14 frgpup.r . . 3 = ( ~FG𝐼)
15 frgpup.e . . 3 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
162, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupf 19687 . 2 (𝜑𝐸:𝑋𝐵)
17 eqid 2729 . . . . . . . . . . 11 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
186, 17, 14frgpval 19672 . . . . . . . . . 10 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
195, 18syl 17 . . . . . . . . 9 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
20 2on 8424 . . . . . . . . . . . . 13 2o ∈ On
21 xpexg 7706 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
225, 20, 21sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐼 × 2o) ∈ V)
23 wrdexg 14465 . . . . . . . . . . . 12 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
24 fvi 6919 . . . . . . . . . . . 12 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2613, 25eqtrid 2776 . . . . . . . . . 10 (𝜑𝑊 = Word (𝐼 × 2o))
27 eqid 2729 . . . . . . . . . . . 12 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
2817, 27frmdbas 18761 . . . . . . . . . . 11 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
2922, 28syl 17 . . . . . . . . . 10 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
3026, 29eqtr4d 2767 . . . . . . . . 9 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
3114fvexi 6854 . . . . . . . . . 10 ∈ V
3231a1i 11 . . . . . . . . 9 (𝜑 ∈ V)
33 fvexd 6855 . . . . . . . . 9 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
3419, 30, 32, 33qusbas 17484 . . . . . . . 8 (𝜑 → (𝑊 / ) = (Base‘𝐺))
351, 34eqtr4id 2783 . . . . . . 7 (𝜑𝑋 = (𝑊 / ))
36 eqimss 4002 . . . . . . 7 (𝑋 = (𝑊 / ) → 𝑋 ⊆ (𝑊 / ))
3735, 36syl 17 . . . . . 6 (𝜑𝑋 ⊆ (𝑊 / ))
3837adantr 480 . . . . 5 ((𝜑𝑎𝑋) → 𝑋 ⊆ (𝑊 / ))
3938sselda 3943 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → 𝑐 ∈ (𝑊 / ))
40 eqid 2729 . . . . 5 (𝑊 / ) = (𝑊 / )
41 oveq2 7377 . . . . . . 7 ([𝑢] = 𝑐 → (𝑎(+g𝐺)[𝑢] ) = (𝑎(+g𝐺)𝑐))
4241fveq2d 6844 . . . . . 6 ([𝑢] = 𝑐 → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)𝑐)))
43 fveq2 6840 . . . . . . 7 ([𝑢] = 𝑐 → (𝐸‘[𝑢] ) = (𝐸𝑐))
4443oveq2d 7385 . . . . . 6 ([𝑢] = 𝑐 → ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
4542, 44eqeq12d 2745 . . . . 5 ([𝑢] = 𝑐 → ((𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐))))
4637sselda 3943 . . . . . . . 8 ((𝜑𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
4746adantlr 715 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
48 fvoveq1 7392 . . . . . . . . 9 ([𝑡] = 𝑎 → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)[𝑢] )))
49 fveq2 6840 . . . . . . . . . 10 ([𝑡] = 𝑎 → (𝐸‘[𝑡] ) = (𝐸𝑎))
5049oveq1d 7384 . . . . . . . . 9 ([𝑡] = 𝑎 → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
5148, 50eqeq12d 2745 . . . . . . . 8 ([𝑡] = 𝑎 → ((𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] ))))
52 fviss 6920 . . . . . . . . . . . . . . . 16 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
5313, 52eqsstri 3990 . . . . . . . . . . . . . . 15 𝑊 ⊆ Word (𝐼 × 2o)
5453sseli 3939 . . . . . . . . . . . . . 14 (𝑡𝑊𝑡 ∈ Word (𝐼 × 2o))
5553sseli 3939 . . . . . . . . . . . . . 14 (𝑢𝑊𝑢 ∈ Word (𝐼 × 2o))
56 ccatcl 14515 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o)) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5754, 55, 56syl2an 596 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5813efgrcl 19629 . . . . . . . . . . . . . . 15 (𝑡𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝑡𝑊𝑢𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
6059simprd 495 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → 𝑊 = Word (𝐼 × 2o))
6157, 60eleqtrrd 2831 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ 𝑊)
622, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19688 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 ++ 𝑢) ∈ 𝑊) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6361, 62sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6454ad2antrl 728 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑡 ∈ Word (𝐼 × 2o))
6555ad2antll 729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑢 ∈ Word (𝐼 × 2o))
662, 10, 11, 9, 5, 12frgpuptf 19684 . . . . . . . . . . . . . 14 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
6766adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑇:(𝐼 × 2o)⟶𝐵)
68 ccatco 14777 . . . . . . . . . . . . 13 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
6964, 65, 67, 68syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
7069oveq2d 7385 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))) = (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))))
719grpmndd 18860 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Mnd)
7271adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝐻 ∈ Mnd)
73 wrdco 14773 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑡) ∈ Word 𝐵)
7454, 66, 73syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑡𝑊) → (𝑇𝑡) ∈ Word 𝐵)
7574adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑡) ∈ Word 𝐵)
76 wrdco 14773 . . . . . . . . . . . . 13 ((𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑢) ∈ Word 𝐵)
7765, 67, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑢) ∈ Word 𝐵)
782, 4gsumccat 18750 . . . . . . . . . . . 12 ((𝐻 ∈ Mnd ∧ (𝑇𝑡) ∈ Word 𝐵 ∧ (𝑇𝑢) ∈ Word 𝐵) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
7972, 75, 77, 78syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8063, 70, 793eqtrd 2768 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8113, 6, 14, 3frgpadd 19677 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8281adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8382fveq2d 6844 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘[(𝑡 ++ 𝑢)] ))
842, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19688 . . . . . . . . . . . 12 ((𝜑𝑡𝑊) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
8584adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
862, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19688 . . . . . . . . . . . 12 ((𝜑𝑢𝑊) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8786adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8885, 87oveq12d 7387 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8980, 83, 883eqtr4d 2774 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9089anass1rs 655 . . . . . . . 8 (((𝜑𝑢𝑊) ∧ 𝑡𝑊) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9140, 51, 90ectocld 8732 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9247, 91syldan 591 . . . . . 6 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9392an32s 652 . . . . 5 (((𝜑𝑎𝑋) ∧ 𝑢𝑊) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9440, 45, 93ectocld 8732 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9539, 94syldan 591 . . 3 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9695anasss 466 . 2 ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
971, 2, 3, 4, 8, 9, 16, 96isghmd 19139 1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  c0 4292  ifcif 4484  cop 4591  cmpt 5183   I cid 5525   × cxp 5629  ran crn 5632  ccom 5635  Oncon0 6320  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  2oc2o 8405  [cec 8646   / cqs 8647  Word cword 14454   ++ cconcat 14511  Basecbs 17155  +gcplusg 17196   Σg cgsu 17379   /s cqus 17444  Mndcmnd 18643  freeMndcfrmd 18756  Grpcgrp 18847  invgcminusg 18848   GrpHom cghm 19126   ~FG cefg 19620  freeGrpcfrgp 19621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-gsum 17381  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-frmd 18758  df-grp 18850  df-minusg 18851  df-ghm 19127  df-efg 19623  df-frgp 19624
This theorem is referenced by:  frgpup3lem  19691  frgpup3  19692
  Copyright terms: Public domain W3C validator