MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup1 Structured version   Visualization version   GIF version

Theorem frgpup1 19557
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpup1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpup1
Dummy variables 𝑎 𝑢 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.x . 2 𝑋 = (Base‘𝐺)
2 frgpup.b . 2 𝐵 = (Base‘𝐻)
3 eqid 2736 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2736 . 2 (+g𝐻) = (+g𝐻)
5 frgpup.i . . 3 (𝜑𝐼𝑉)
6 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
76frgpgrp 19544 . . 3 (𝐼𝑉𝐺 ∈ Grp)
85, 7syl 17 . 2 (𝜑𝐺 ∈ Grp)
9 frgpup.h . 2 (𝜑𝐻 ∈ Grp)
10 frgpup.n . . 3 𝑁 = (invg𝐻)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
12 frgpup.a . . 3 (𝜑𝐹:𝐼𝐵)
13 frgpup.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
14 frgpup.r . . 3 = ( ~FG𝐼)
15 frgpup.e . . 3 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
162, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupf 19555 . 2 (𝜑𝐸:𝑋𝐵)
17 eqid 2736 . . . . . . . . . . 11 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
186, 17, 14frgpval 19540 . . . . . . . . . 10 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
195, 18syl 17 . . . . . . . . 9 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
20 2on 8426 . . . . . . . . . . . . 13 2o ∈ On
21 xpexg 7684 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
225, 20, 21sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐼 × 2o) ∈ V)
23 wrdexg 14412 . . . . . . . . . . . 12 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
24 fvi 6917 . . . . . . . . . . . 12 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2613, 25eqtrid 2788 . . . . . . . . . 10 (𝜑𝑊 = Word (𝐼 × 2o))
27 eqid 2736 . . . . . . . . . . . 12 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
2817, 27frmdbas 18662 . . . . . . . . . . 11 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
2922, 28syl 17 . . . . . . . . . 10 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
3026, 29eqtr4d 2779 . . . . . . . . 9 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
3114fvexi 6856 . . . . . . . . . 10 ∈ V
3231a1i 11 . . . . . . . . 9 (𝜑 ∈ V)
33 fvexd 6857 . . . . . . . . 9 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
3419, 30, 32, 33qusbas 17427 . . . . . . . 8 (𝜑 → (𝑊 / ) = (Base‘𝐺))
351, 34eqtr4id 2795 . . . . . . 7 (𝜑𝑋 = (𝑊 / ))
36 eqimss 4000 . . . . . . 7 (𝑋 = (𝑊 / ) → 𝑋 ⊆ (𝑊 / ))
3735, 36syl 17 . . . . . 6 (𝜑𝑋 ⊆ (𝑊 / ))
3837adantr 481 . . . . 5 ((𝜑𝑎𝑋) → 𝑋 ⊆ (𝑊 / ))
3938sselda 3944 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → 𝑐 ∈ (𝑊 / ))
40 eqid 2736 . . . . 5 (𝑊 / ) = (𝑊 / )
41 oveq2 7365 . . . . . . 7 ([𝑢] = 𝑐 → (𝑎(+g𝐺)[𝑢] ) = (𝑎(+g𝐺)𝑐))
4241fveq2d 6846 . . . . . 6 ([𝑢] = 𝑐 → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)𝑐)))
43 fveq2 6842 . . . . . . 7 ([𝑢] = 𝑐 → (𝐸‘[𝑢] ) = (𝐸𝑐))
4443oveq2d 7373 . . . . . 6 ([𝑢] = 𝑐 → ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
4542, 44eqeq12d 2752 . . . . 5 ([𝑢] = 𝑐 → ((𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐))))
4637sselda 3944 . . . . . . . 8 ((𝜑𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
4746adantlr 713 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
48 fvoveq1 7380 . . . . . . . . 9 ([𝑡] = 𝑎 → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)[𝑢] )))
49 fveq2 6842 . . . . . . . . . 10 ([𝑡] = 𝑎 → (𝐸‘[𝑡] ) = (𝐸𝑎))
5049oveq1d 7372 . . . . . . . . 9 ([𝑡] = 𝑎 → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
5148, 50eqeq12d 2752 . . . . . . . 8 ([𝑡] = 𝑎 → ((𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] ))))
52 fviss 6918 . . . . . . . . . . . . . . . 16 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
5313, 52eqsstri 3978 . . . . . . . . . . . . . . 15 𝑊 ⊆ Word (𝐼 × 2o)
5453sseli 3940 . . . . . . . . . . . . . 14 (𝑡𝑊𝑡 ∈ Word (𝐼 × 2o))
5553sseli 3940 . . . . . . . . . . . . . 14 (𝑢𝑊𝑢 ∈ Word (𝐼 × 2o))
56 ccatcl 14462 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o)) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5754, 55, 56syl2an 596 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2o))
5813efgrcl 19497 . . . . . . . . . . . . . . 15 (𝑡𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
5958adantr 481 . . . . . . . . . . . . . 14 ((𝑡𝑊𝑢𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
6059simprd 496 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → 𝑊 = Word (𝐼 × 2o))
6157, 60eleqtrrd 2841 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ 𝑊)
622, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19556 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 ++ 𝑢) ∈ 𝑊) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6361, 62sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6454ad2antrl 726 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑡 ∈ Word (𝐼 × 2o))
6555ad2antll 727 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑢 ∈ Word (𝐼 × 2o))
662, 10, 11, 9, 5, 12frgpuptf 19552 . . . . . . . . . . . . . 14 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
6766adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑇:(𝐼 × 2o)⟶𝐵)
68 ccatco 14724 . . . . . . . . . . . . 13 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
6964, 65, 67, 68syl3anc 1371 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
7069oveq2d 7373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))) = (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))))
719grpmndd 18760 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Mnd)
7271adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝐻 ∈ Mnd)
73 wrdco 14720 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑡) ∈ Word 𝐵)
7454, 66, 73syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑡𝑊) → (𝑇𝑡) ∈ Word 𝐵)
7574adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑡) ∈ Word 𝐵)
76 wrdco 14720 . . . . . . . . . . . . 13 ((𝑢 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑢) ∈ Word 𝐵)
7765, 67, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑢) ∈ Word 𝐵)
782, 4gsumccat 18651 . . . . . . . . . . . 12 ((𝐻 ∈ Mnd ∧ (𝑇𝑡) ∈ Word 𝐵 ∧ (𝑇𝑢) ∈ Word 𝐵) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
7972, 75, 77, 78syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8063, 70, 793eqtrd 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8113, 6, 14, 3frgpadd 19545 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8281adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8382fveq2d 6846 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘[(𝑡 ++ 𝑢)] ))
842, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19556 . . . . . . . . . . . 12 ((𝜑𝑡𝑊) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
8584adantrr 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
862, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 19556 . . . . . . . . . . . 12 ((𝜑𝑢𝑊) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8786adantrl 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
8885, 87oveq12d 7375 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8980, 83, 883eqtr4d 2786 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9089anass1rs 653 . . . . . . . 8 (((𝜑𝑢𝑊) ∧ 𝑡𝑊) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9140, 51, 90ectocld 8723 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9247, 91syldan 591 . . . . . 6 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9392an32s 650 . . . . 5 (((𝜑𝑎𝑋) ∧ 𝑢𝑊) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9440, 45, 93ectocld 8723 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9539, 94syldan 591 . . 3 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9695anasss 467 . 2 ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
971, 2, 3, 4, 8, 9, 16, 96isghmd 19017 1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  wss 3910  c0 4282  ifcif 4486  cop 4592  cmpt 5188   I cid 5530   × cxp 5631  ran crn 5634  ccom 5637  Oncon0 6317  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  2oc2o 8406  [cec 8646   / cqs 8647  Word cword 14402   ++ cconcat 14458  Basecbs 17083  +gcplusg 17133   Σg cgsu 17322   /s cqus 17387  Mndcmnd 18556  freeMndcfrmd 18657  Grpcgrp 18748  invgcminusg 18749   GrpHom cghm 19005   ~FG cefg 19488  freeGrpcfrgp 19489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-splice 14638  df-reverse 14647  df-s2 14737  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-0g 17323  df-gsum 17324  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-frmd 18659  df-grp 18751  df-minusg 18752  df-ghm 19006  df-efg 19491  df-frgp 19492
This theorem is referenced by:  frgpup3lem  19559  frgpup3  19560
  Copyright terms: Public domain W3C validator