![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgcpbllema | Structured version Visualization version GIF version |
Description: Lemma for efgrelex 19793. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgcpbllem.1 | ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
Ref | Expression |
---|---|
efgcpbllema | ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . 5 ⊢ (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋)) | |
2 | 1 | oveq1d 7463 | . . . 4 ⊢ (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵)) |
3 | oveq2 7456 | . . . . 5 ⊢ (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌)) | |
4 | 3 | oveq1d 7463 | . . . 4 ⊢ (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵)) |
5 | 2, 4 | breqan12d 5182 | . . 3 ⊢ ((𝑖 = 𝑋 ∧ 𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
6 | efgcpbllem.1 | . . . 4 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} | |
7 | vex 3492 | . . . . . . 7 ⊢ 𝑖 ∈ V | |
8 | vex 3492 | . . . . . . 7 ⊢ 𝑗 ∈ V | |
9 | 7, 8 | prss 4845 | . . . . . 6 ⊢ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊) |
10 | 9 | anbi1i 623 | . . . . 5 ⊢ (((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))) |
11 | 10 | opabbii 5233 | . . . 4 ⊢ {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
12 | 6, 11 | eqtr4i 2771 | . . 3 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
13 | 5, 12 | brab2a 5793 | . 2 ⊢ (𝑋𝐿𝑌 ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
14 | df-3an 1089 | . 2 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | |
15 | 13, 14 | bitr4i 278 | 1 ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 {csn 4648 {cpr 4650 〈cop 4654 〈cotp 4656 ∪ ciun 5015 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 I cid 5592 × cxp 5698 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1oc1o 8515 2oc2o 8516 0cc0 11184 1c1 11185 − cmin 11520 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 ++ cconcat 14618 splice csplice 14797 〈“cs2 14890 ~FG cefg 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: efgcpbllemb 19797 efgcpbl 19798 |
Copyright terms: Public domain | W3C validator |