![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgcpbllema | Structured version Visualization version GIF version |
Description: Lemma for efgrelex 19784. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgcpbllem.1 | ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
Ref | Expression |
---|---|
efgcpbllema | ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . . . 5 ⊢ (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋)) | |
2 | 1 | oveq1d 7446 | . . . 4 ⊢ (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵)) |
3 | oveq2 7439 | . . . . 5 ⊢ (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌)) | |
4 | 3 | oveq1d 7446 | . . . 4 ⊢ (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵)) |
5 | 2, 4 | breqan12d 5164 | . . 3 ⊢ ((𝑖 = 𝑋 ∧ 𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
6 | efgcpbllem.1 | . . . 4 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} | |
7 | vex 3482 | . . . . . . 7 ⊢ 𝑖 ∈ V | |
8 | vex 3482 | . . . . . . 7 ⊢ 𝑗 ∈ V | |
9 | 7, 8 | prss 4825 | . . . . . 6 ⊢ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊) |
10 | 9 | anbi1i 624 | . . . . 5 ⊢ (((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))) |
11 | 10 | opabbii 5215 | . . . 4 ⊢ {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
12 | 6, 11 | eqtr4i 2766 | . . 3 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
13 | 5, 12 | brab2a 5782 | . 2 ⊢ (𝑋𝐿𝑌 ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
14 | df-3an 1088 | . 2 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | |
15 | 13, 14 | bitr4i 278 | 1 ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 {csn 4631 {cpr 4633 〈cop 4637 〈cotp 4639 ∪ ciun 4996 class class class wbr 5148 {copab 5210 ↦ cmpt 5231 I cid 5582 × cxp 5687 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8498 2oc2o 8499 0cc0 11153 1c1 11154 − cmin 11490 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 ++ cconcat 14605 splice csplice 14784 〈“cs2 14877 ~FG cefg 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: efgcpbllemb 19788 efgcpbl 19789 |
Copyright terms: Public domain | W3C validator |