MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbllema Structured version   Visualization version   GIF version

Theorem efgcpbllema 19787
Description: Lemma for efgrelex 19784. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgcpbllem.1 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
Assertion
Ref Expression
efgcpbllema (𝑋𝐿𝑌 ↔ (𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑗   𝑖,𝑘,𝑇,𝑗,𝑚,𝑡,𝑥   𝑖,𝑋,𝑗   𝑦,𝑖,𝑧,𝑊,𝑗   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑖,𝑗,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑖,𝑗   𝑆,𝑖,𝑗   𝑖,𝑌,𝑗   𝑖,𝐼,𝑗,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑖,𝑗,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑖,𝑗,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgcpbllema
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋))
21oveq1d 7446 . . . 4 (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵))
3 oveq2 7439 . . . . 5 (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌))
43oveq1d 7446 . . . 4 (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵))
52, 4breqan12d 5164 . . 3 ((𝑖 = 𝑋𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
6 efgcpbllem.1 . . . 4 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
7 vex 3482 . . . . . . 7 𝑖 ∈ V
8 vex 3482 . . . . . . 7 𝑗 ∈ V
97, 8prss 4825 . . . . . 6 ((𝑖𝑊𝑗𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊)
109anbi1i 624 . . . . 5 (((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵)))
1110opabbii 5215 . . . 4 {⟨𝑖, 𝑗⟩ ∣ ((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
126, 11eqtr4i 2766 . . 3 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
135, 12brab2a 5782 . 2 (𝑋𝐿𝑌 ↔ ((𝑋𝑊𝑌𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
14 df-3an 1088 . 2 ((𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋𝑊𝑌𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
1513, 14bitr4i 278 1 (𝑋𝐿𝑌 ↔ (𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cdif 3960  wss 3963  c0 4339  {csn 4631  {cpr 4633  cop 4637  cotp 4639   ciun 4996   class class class wbr 5148  {copab 5210  cmpt 5231   I cid 5582   × cxp 5687  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  1oc1o 8498  2oc2o 8499  0cc0 11153  1c1 11154  cmin 11490  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605   splice csplice 14784  ⟨“cs2 14877   ~FG cefg 19739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  efgcpbllemb  19788  efgcpbl  19789
  Copyright terms: Public domain W3C validator