| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgcpbllema | Structured version Visualization version GIF version | ||
| Description: Lemma for efgrelex 19665. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| efgcpbllem.1 | ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
| Ref | Expression |
|---|---|
| efgcpbllema | ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7360 | . . . . 5 ⊢ (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋)) | |
| 2 | 1 | oveq1d 7367 | . . . 4 ⊢ (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵)) |
| 3 | oveq2 7360 | . . . . 5 ⊢ (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌)) | |
| 4 | 3 | oveq1d 7367 | . . . 4 ⊢ (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵)) |
| 5 | 2, 4 | breqan12d 5109 | . . 3 ⊢ ((𝑖 = 𝑋 ∧ 𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| 6 | efgcpbllem.1 | . . . 4 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} | |
| 7 | vex 3441 | . . . . . . 7 ⊢ 𝑖 ∈ V | |
| 8 | vex 3441 | . . . . . . 7 ⊢ 𝑗 ∈ V | |
| 9 | 7, 8 | prss 4771 | . . . . . 6 ⊢ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊) |
| 10 | 9 | anbi1i 624 | . . . . 5 ⊢ (((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))) |
| 11 | 10 | opabbii 5160 | . . . 4 ⊢ {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
| 12 | 6, 11 | eqtr4i 2759 | . . 3 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
| 13 | 5, 12 | brab2a 5712 | . 2 ⊢ (𝑋𝐿𝑌 ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| 14 | df-3an 1088 | . 2 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | |
| 15 | 13, 14 | bitr4i 278 | 1 ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 {csn 4575 {cpr 4577 〈cop 4581 〈cotp 4583 ∪ ciun 4941 class class class wbr 5093 {copab 5155 ↦ cmpt 5174 I cid 5513 × cxp 5617 ran crn 5620 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 1oc1o 8384 2oc2o 8385 0cc0 11013 1c1 11014 − cmin 11351 ...cfz 13409 ..^cfzo 13556 ♯chash 14239 Word cword 14422 ++ cconcat 14479 splice csplice 14658 〈“cs2 14750 ~FG cefg 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: efgcpbllemb 19669 efgcpbl 19670 |
| Copyright terms: Public domain | W3C validator |