MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbllema Structured version   Visualization version   GIF version

Theorem efgcpbllema 19691
Description: Lemma for efgrelex 19688. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgcpbllem.1 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
Assertion
Ref Expression
efgcpbllema (𝑋𝐿𝑌 ↔ (𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑗   𝑖,𝑘,𝑇,𝑗,𝑚,𝑡,𝑥   𝑖,𝑋,𝑗   𝑦,𝑖,𝑧,𝑊,𝑗   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑖,𝑗,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑖,𝑗   𝑆,𝑖,𝑗   𝑖,𝑌,𝑗   𝑖,𝐼,𝑗,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑖,𝑗,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑖,𝑗,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgcpbllema
StepHypRef Expression
1 oveq2 7398 . . . . 5 (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋))
21oveq1d 7405 . . . 4 (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵))
3 oveq2 7398 . . . . 5 (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌))
43oveq1d 7405 . . . 4 (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵))
52, 4breqan12d 5126 . . 3 ((𝑖 = 𝑋𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
6 efgcpbllem.1 . . . 4 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
7 vex 3454 . . . . . . 7 𝑖 ∈ V
8 vex 3454 . . . . . . 7 𝑗 ∈ V
97, 8prss 4787 . . . . . 6 ((𝑖𝑊𝑗𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊)
109anbi1i 624 . . . . 5 (((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵)))
1110opabbii 5177 . . . 4 {⟨𝑖, 𝑗⟩ ∣ ((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
126, 11eqtr4i 2756 . . 3 𝐿 = {⟨𝑖, 𝑗⟩ ∣ ((𝑖𝑊𝑗𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ((𝐴 ++ 𝑗) ++ 𝐵))}
135, 12brab2a 5735 . 2 (𝑋𝐿𝑌 ↔ ((𝑋𝑊𝑌𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
14 df-3an 1088 . 2 ((𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋𝑊𝑌𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
1513, 14bitr4i 278 1 (𝑋𝐿𝑌 ↔ (𝑋𝑊𝑌𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ((𝐴 ++ 𝑌) ++ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3914  wss 3917  c0 4299  {csn 4592  {cpr 4594  cop 4598  cotp 4600   ciun 4958   class class class wbr 5110  {copab 5172  cmpt 5191   I cid 5535   × cxp 5639  ran crn 5642  cfv 6514  (class class class)co 7390  cmpo 7392  1oc1o 8430  2oc2o 8431  0cc0 11075  1c1 11076  cmin 11412  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542   splice csplice 14721  ⟨“cs2 14814   ~FG cefg 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  efgcpbllemb  19692  efgcpbl  19693
  Copyright terms: Public domain W3C validator