![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgcpbllema | Structured version Visualization version GIF version |
Description: Lemma for efgrelex 19723. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgcpbllem.1 | ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
Ref | Expression |
---|---|
efgcpbllema | ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7427 | . . . . 5 ⊢ (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋)) | |
2 | 1 | oveq1d 7434 | . . . 4 ⊢ (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵)) |
3 | oveq2 7427 | . . . . 5 ⊢ (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌)) | |
4 | 3 | oveq1d 7434 | . . . 4 ⊢ (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵)) |
5 | 2, 4 | breqan12d 5165 | . . 3 ⊢ ((𝑖 = 𝑋 ∧ 𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
6 | efgcpbllem.1 | . . . 4 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} | |
7 | vex 3465 | . . . . . . 7 ⊢ 𝑖 ∈ V | |
8 | vex 3465 | . . . . . . 7 ⊢ 𝑗 ∈ V | |
9 | 7, 8 | prss 4825 | . . . . . 6 ⊢ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊) |
10 | 9 | anbi1i 622 | . . . . 5 ⊢ (((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))) |
11 | 10 | opabbii 5216 | . . . 4 ⊢ {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
12 | 6, 11 | eqtr4i 2756 | . . 3 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
13 | 5, 12 | brab2a 5771 | . 2 ⊢ (𝑋𝐿𝑌 ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
14 | df-3an 1086 | . 2 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | |
15 | 13, 14 | bitr4i 277 | 1 ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {crab 3418 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4322 {csn 4630 {cpr 4632 〈cop 4636 〈cotp 4638 ∪ ciun 4997 class class class wbr 5149 {copab 5211 ↦ cmpt 5232 I cid 5575 × cxp 5676 ran crn 5679 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1oc1o 8480 2oc2o 8481 0cc0 11145 1c1 11146 − cmin 11481 ...cfz 13524 ..^cfzo 13667 ♯chash 14330 Word cword 14505 ++ cconcat 14561 splice csplice 14740 〈“cs2 14833 ~FG cefg 19678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5684 df-iota 6501 df-fv 6557 df-ov 7422 |
This theorem is referenced by: efgcpbllemb 19727 efgcpbl 19728 |
Copyright terms: Public domain | W3C validator |