| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgcpbllema | Structured version Visualization version GIF version | ||
| Description: Lemma for efgrelex 19648. Define an auxiliary equivalence relation 𝐿 such that 𝐴𝐿𝐵 if there are sequences from 𝐴 to 𝐵 passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| efgcpbllem.1 | ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
| Ref | Expression |
|---|---|
| efgcpbllema | ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . . . 5 ⊢ (𝑖 = 𝑋 → (𝐴 ++ 𝑖) = (𝐴 ++ 𝑋)) | |
| 2 | 1 | oveq1d 7368 | . . . 4 ⊢ (𝑖 = 𝑋 → ((𝐴 ++ 𝑖) ++ 𝐵) = ((𝐴 ++ 𝑋) ++ 𝐵)) |
| 3 | oveq2 7361 | . . . . 5 ⊢ (𝑗 = 𝑌 → (𝐴 ++ 𝑗) = (𝐴 ++ 𝑌)) | |
| 4 | 3 | oveq1d 7368 | . . . 4 ⊢ (𝑗 = 𝑌 → ((𝐴 ++ 𝑗) ++ 𝐵) = ((𝐴 ++ 𝑌) ++ 𝐵)) |
| 5 | 2, 4 | breqan12d 5111 | . . 3 ⊢ ((𝑖 = 𝑋 ∧ 𝑗 = 𝑌) → (((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵) ↔ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| 6 | efgcpbllem.1 | . . . 4 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} | |
| 7 | vex 3442 | . . . . . . 7 ⊢ 𝑖 ∈ V | |
| 8 | vex 3442 | . . . . . . 7 ⊢ 𝑗 ∈ V | |
| 9 | 7, 8 | prss 4774 | . . . . . 6 ⊢ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ↔ {𝑖, 𝑗} ⊆ 𝑊) |
| 10 | 9 | anbi1i 624 | . . . . 5 ⊢ (((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵)) ↔ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))) |
| 11 | 10 | opabbii 5162 | . . . 4 ⊢ {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} = {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑊 ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
| 12 | 6, 11 | eqtr4i 2755 | . . 3 ⊢ 𝐿 = {〈𝑖, 𝑗〉 ∣ ((𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊) ∧ ((𝐴 ++ 𝑖) ++ 𝐵) ∼ ((𝐴 ++ 𝑗) ++ 𝐵))} |
| 13 | 5, 12 | brab2a 5716 | . 2 ⊢ (𝑋𝐿𝑌 ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| 14 | df-3an 1088 | . 2 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵)) ↔ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊) ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) | |
| 15 | 13, 14 | bitr4i 278 | 1 ⊢ (𝑋𝐿𝑌 ↔ (𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ((𝐴 ++ 𝑋) ++ 𝐵) ∼ ((𝐴 ++ 𝑌) ++ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 {csn 4579 {cpr 4581 〈cop 4585 〈cotp 4587 ∪ ciun 4944 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 I cid 5517 × cxp 5621 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1oc1o 8388 2oc2o 8389 0cc0 11028 1c1 11029 − cmin 11365 ...cfz 13428 ..^cfzo 13575 ♯chash 14255 Word cword 14438 ++ cconcat 14495 splice csplice 14673 〈“cs2 14766 ~FG cefg 19603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: efgcpbllemb 19652 efgcpbl 19653 |
| Copyright terms: Public domain | W3C validator |