MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgrelex Structured version   Visualization version   GIF version

Theorem efgrelex 19720
Description: If two words 𝐴, 𝐡 are related under the free group equivalence, then there exist two extension sequences π‘Ž, 𝑏 such that π‘Ž ends at 𝐴, 𝑏 ends at 𝐡, and π‘Ž and 𝐡 have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
Assertion
Ref Expression
efgrelex (𝐴 ∼ 𝐡 β†’ βˆƒπ‘Ž ∈ (◑𝑆 β€œ {𝐴})βˆƒπ‘ ∈ (◑𝑆 β€œ {𝐡})(π‘Žβ€˜0) = (π‘β€˜0))
Distinct variable groups:   π‘Ž,𝑏,𝐴   𝑦,π‘Ž,𝑧,𝑏   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧   π‘š,π‘Ž,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑀,𝑏   π‘˜,π‘Ž,𝑇,𝑏,π‘š,𝑑,π‘₯   π‘Š,π‘Ž,𝑏   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘Ž,𝑏,π‘š,𝑑,π‘₯,𝑦,𝑧   𝐡,π‘Ž,𝑏   𝑆,π‘Ž,𝑏   𝐼,π‘Ž,𝑏,π‘š,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘Ž,𝑏,π‘š,𝑑
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐡(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐼(π‘˜)   𝑀(𝑦,𝑧,π‘˜)

Proof of Theorem efgrelex
Dummy variables 𝑐 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
2 efgval.r . . . 4 ∼ = ( ~FG β€˜πΌ)
3 efgval2.m . . . 4 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
5 efgred.d . . . 4 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
6 efgred.s . . . 4 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
7 eqid 2728 . . . 4 {βŸ¨π‘–, π‘—βŸ© ∣ βˆƒπ‘ ∈ (◑𝑆 β€œ {𝑖})βˆƒπ‘‘ ∈ (◑𝑆 β€œ {𝑗})(π‘β€˜0) = (π‘‘β€˜0)} = {βŸ¨π‘–, π‘—βŸ© ∣ βˆƒπ‘ ∈ (◑𝑆 β€œ {𝑖})βˆƒπ‘‘ ∈ (◑𝑆 β€œ {𝑗})(π‘β€˜0) = (π‘‘β€˜0)}
81, 2, 3, 4, 5, 6, 7efgrelexlemb 19719 . . 3 ∼ βŠ† {βŸ¨π‘–, π‘—βŸ© ∣ βˆƒπ‘ ∈ (◑𝑆 β€œ {𝑖})βˆƒπ‘‘ ∈ (◑𝑆 β€œ {𝑗})(π‘β€˜0) = (π‘‘β€˜0)}
98ssbri 5197 . 2 (𝐴 ∼ 𝐡 β†’ 𝐴{βŸ¨π‘–, π‘—βŸ© ∣ βˆƒπ‘ ∈ (◑𝑆 β€œ {𝑖})βˆƒπ‘‘ ∈ (◑𝑆 β€œ {𝑗})(π‘β€˜0) = (π‘‘β€˜0)}𝐡)
101, 2, 3, 4, 5, 6, 7efgrelexlema 19718 . 2 (𝐴{βŸ¨π‘–, π‘—βŸ© ∣ βˆƒπ‘ ∈ (◑𝑆 β€œ {𝑖})βˆƒπ‘‘ ∈ (◑𝑆 β€œ {𝑗})(π‘β€˜0) = (π‘‘β€˜0)}𝐡 ↔ βˆƒπ‘Ž ∈ (◑𝑆 β€œ {𝐴})βˆƒπ‘ ∈ (◑𝑆 β€œ {𝐡})(π‘Žβ€˜0) = (π‘β€˜0))
119, 10sylib 217 1 (𝐴 ∼ 𝐡 β†’ βˆƒπ‘Ž ∈ (◑𝑆 β€œ {𝐴})βˆƒπ‘ ∈ (◑𝑆 β€œ {𝐡})(π‘Žβ€˜0) = (π‘β€˜0))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3058  βˆƒwrex 3067  {crab 3430   βˆ– cdif 3946  βˆ…c0 4326  {csn 4632  βŸ¨cop 4638  βŸ¨cotp 4640  βˆͺ ciun 5000   class class class wbr 5152  {copab 5214   ↦ cmpt 5235   I cid 5579   Γ— cxp 5680  β—‘ccnv 5681  ran crn 5683   β€œ cima 5685  β€˜cfv 6553  (class class class)co 7426   ∈ cmpo 7428  1oc1o 8488  2oc2o 8489  0cc0 11148  1c1 11149   βˆ’ cmin 11484  ...cfz 13526  ..^cfzo 13669  β™―chash 14331  Word cword 14506   splice csplice 14741  βŸ¨β€œcs2 14834   ~FG cefg 19675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-ec 8735  df-map 8855  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-n0 12513  df-xnn0 12585  df-z 12599  df-uz 12863  df-rp 13017  df-fz 13527  df-fzo 13670  df-hash 14332  df-word 14507  df-concat 14563  df-s1 14588  df-substr 14633  df-pfx 14663  df-splice 14742  df-s2 14841  df-efg 19678
This theorem is referenced by:  efgredeu  19721
  Copyright terms: Public domain W3C validator