![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgrelex | Structured version Visualization version GIF version |
Description: If two words π΄, π΅ are related under the free group equivalence, then there exist two extension sequences π, π such that π ends at π΄, π ends at π΅, and π and π΅ have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | β’ π = ( I βWord (πΌ Γ 2o)) |
efgval.r | β’ βΌ = ( ~FG βπΌ) |
efgval2.m | β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
efgval2.t | β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
efgred.d | β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) |
efgred.s | β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
Ref | Expression |
---|---|
efgrelex | β’ (π΄ βΌ π΅ β βπ β (β‘π β {π΄})βπ β (β‘π β {π΅})(πβ0) = (πβ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 β’ π = ( I βWord (πΌ Γ 2o)) | |
2 | efgval.r | . . . 4 β’ βΌ = ( ~FG βπΌ) | |
3 | efgval2.m | . . . 4 β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) | |
4 | efgval2.t | . . . 4 β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) | |
5 | efgred.d | . . . 4 β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) | |
6 | efgred.s | . . . 4 β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) | |
7 | eqid 2726 | . . . 4 β’ {β¨π, πβ© β£ βπ β (β‘π β {π})βπ β (β‘π β {π})(πβ0) = (πβ0)} = {β¨π, πβ© β£ βπ β (β‘π β {π})βπ β (β‘π β {π})(πβ0) = (πβ0)} | |
8 | 1, 2, 3, 4, 5, 6, 7 | efgrelexlemb 19670 | . . 3 β’ βΌ β {β¨π, πβ© β£ βπ β (β‘π β {π})βπ β (β‘π β {π})(πβ0) = (πβ0)} |
9 | 8 | ssbri 5186 | . 2 β’ (π΄ βΌ π΅ β π΄{β¨π, πβ© β£ βπ β (β‘π β {π})βπ β (β‘π β {π})(πβ0) = (πβ0)}π΅) |
10 | 1, 2, 3, 4, 5, 6, 7 | efgrelexlema 19669 | . 2 β’ (π΄{β¨π, πβ© β£ βπ β (β‘π β {π})βπ β (β‘π β {π})(πβ0) = (πβ0)}π΅ β βπ β (β‘π β {π΄})βπ β (β‘π β {π΅})(πβ0) = (πβ0)) |
11 | 9, 10 | sylib 217 | 1 β’ (π΄ βΌ π΅ β βπ β (β‘π β {π΄})βπ β (β‘π β {π΅})(πβ0) = (πβ0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3055 βwrex 3064 {crab 3426 β cdif 3940 β c0 4317 {csn 4623 β¨cop 4629 β¨cotp 4631 βͺ ciun 4990 class class class wbr 5141 {copab 5203 β¦ cmpt 5224 I cid 5566 Γ cxp 5667 β‘ccnv 5668 ran crn 5670 β cima 5672 βcfv 6537 (class class class)co 7405 β cmpo 7407 1oc1o 8460 2oc2o 8461 0cc0 11112 1c1 11113 β cmin 11448 ...cfz 13490 ..^cfzo 13633 β―chash 14295 Word cword 14470 splice csplice 14705 β¨βcs2 14798 ~FG cefg 19626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-ot 4632 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-ec 8707 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-concat 14527 df-s1 14552 df-substr 14597 df-pfx 14627 df-splice 14706 df-s2 14805 df-efg 19629 |
This theorem is referenced by: efgredeu 19672 |
Copyright terms: Public domain | W3C validator |