MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbl Structured version   Visualization version   GIF version

Theorem efgcpbl 19665
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
Assertion
Ref Expression
efgcpbl ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ π‘Š ∧ 𝑋 ∼ π‘Œ) β†’ ((𝐴 ++ 𝑋) ++ 𝐡) ∼ ((𝐴 ++ π‘Œ) ++ 𝐡))
Distinct variable groups:   𝑦,𝑧   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧,π‘š,π‘₯   π‘š,𝑀   π‘₯,𝑛,𝑀,𝑑,𝑣,𝑀   π‘˜,π‘š,𝑑,π‘₯,𝑇   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘š,𝑑,π‘₯,𝑦,𝑧   π‘š,𝐼,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘š,𝑑
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐡(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐼(π‘˜)   𝑀(𝑦,𝑧,π‘˜)   𝑋(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   π‘Œ(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)

Proof of Theorem efgcpbl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
2 efgval.r . . . . 5 ∼ = ( ~FG β€˜πΌ)
3 efgval2.m . . . . 5 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
5 efgred.d . . . . 5 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
6 efgred.s . . . . 5 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
7 eqid 2732 . . . . 5 {βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† π‘Š ∧ ((𝐴 ++ 𝑖) ++ 𝐡) ∼ ((𝐴 ++ 𝑗) ++ 𝐡))} = {βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† π‘Š ∧ ((𝐴 ++ 𝑖) ++ 𝐡) ∼ ((𝐴 ++ 𝑗) ++ 𝐡))}
81, 2, 3, 4, 5, 6, 7efgcpbllemb 19664 . . . 4 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ π‘Š) β†’ ∼ βŠ† {βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† π‘Š ∧ ((𝐴 ++ 𝑖) ++ 𝐡) ∼ ((𝐴 ++ 𝑗) ++ 𝐡))})
98ssbrd 5191 . . 3 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ π‘Š) β†’ (𝑋 ∼ π‘Œ β†’ 𝑋{βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† π‘Š ∧ ((𝐴 ++ 𝑖) ++ 𝐡) ∼ ((𝐴 ++ 𝑗) ++ 𝐡))}π‘Œ))
1093impia 1117 . 2 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ π‘Š ∧ 𝑋 ∼ π‘Œ) β†’ 𝑋{βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† π‘Š ∧ ((𝐴 ++ 𝑖) ++ 𝐡) ∼ ((𝐴 ++ 𝑗) ++ 𝐡))}π‘Œ)
111, 2, 3, 4, 5, 6, 7efgcpbllema 19663 . . 3 (𝑋{βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† π‘Š ∧ ((𝐴 ++ 𝑖) ++ 𝐡) ∼ ((𝐴 ++ 𝑗) ++ 𝐡))}π‘Œ ↔ (𝑋 ∈ π‘Š ∧ π‘Œ ∈ π‘Š ∧ ((𝐴 ++ 𝑋) ++ 𝐡) ∼ ((𝐴 ++ π‘Œ) ++ 𝐡)))
1211simp3bi 1147 . 2 (𝑋{βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† π‘Š ∧ ((𝐴 ++ 𝑖) ++ 𝐡) ∼ ((𝐴 ++ 𝑗) ++ 𝐡))}π‘Œ β†’ ((𝐴 ++ 𝑋) ++ 𝐡) ∼ ((𝐴 ++ π‘Œ) ++ 𝐡))
1310, 12syl 17 1 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ π‘Š ∧ 𝑋 ∼ π‘Œ) β†’ ((𝐴 ++ 𝑋) ++ 𝐡) ∼ ((𝐴 ++ π‘Œ) ++ 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432   βˆ– cdif 3945   βŠ† wss 3948  βˆ…c0 4322  {csn 4628  {cpr 4630  βŸ¨cop 4634  βŸ¨cotp 4636  βˆͺ ciun 4997   class class class wbr 5148  {copab 5210   ↦ cmpt 5231   I cid 5573   Γ— cxp 5674  ran crn 5677  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  1oc1o 8461  2oc2o 8462  0cc0 11112  1c1 11113   βˆ’ cmin 11448  ...cfz 13488  ..^cfzo 13631  β™―chash 14294  Word cword 14468   ++ cconcat 14524   splice csplice 14703  βŸ¨β€œcs2 14796   ~FG cefg 19615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-ec 8707  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-substr 14595  df-pfx 14625  df-splice 14704  df-s2 14803  df-efg 19618
This theorem is referenced by:  efgcpbl2  19666
  Copyright terms: Public domain W3C validator