MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmetlem Structured version   Visualization version   GIF version

Theorem prdsxmetlem 24256
Description: The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsxmetlem (𝜑𝐷 ∈ (∞Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥   𝑥,𝐵   𝑥,𝐷
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsxmetlem
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsdsf.b . . . 4 𝐵 = (Base‘𝑌)
21fvexi 6872 . . 3 𝐵 ∈ V
32a1i 11 . 2 (𝜑𝐵 ∈ V)
4 prdsdsf.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
5 prdsdsf.v . . . 4 𝑉 = (Base‘𝑅)
6 prdsdsf.e . . . 4 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
7 prdsdsf.d . . . 4 𝐷 = (dist‘𝑌)
8 prdsdsf.s . . . 4 (𝜑𝑆𝑊)
9 prdsdsf.i . . . 4 (𝜑𝐼𝑋)
10 prdsdsf.r . . . 4 ((𝜑𝑥𝐼) → 𝑅𝑍)
11 prdsdsf.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
124, 1, 5, 6, 7, 8, 9, 10, 11prdsdsf 24255 . . 3 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
13 iccssxr 13391 . . 3 (0[,]+∞) ⊆ ℝ*
14 fss 6704 . . 3 ((𝐷:(𝐵 × 𝐵)⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐷:(𝐵 × 𝐵)⟶ℝ*)
1512, 13, 14sylancl 586 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ*)
1612fovcdmda 7560 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]+∞))
17 elxrge0 13418 . . . 4 ((𝑓𝐷𝑔) ∈ (0[,]+∞) ↔ ((𝑓𝐷𝑔) ∈ ℝ* ∧ 0 ≤ (𝑓𝐷𝑔)))
1817simprbi 496 . . 3 ((𝑓𝐷𝑔) ∈ (0[,]+∞) → 0 ≤ (𝑓𝐷𝑔))
1916, 18syl 17 . 2 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ≤ (𝑓𝐷𝑔))
208adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
219adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑋)
2210ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
2322adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑍)
24 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
25 simprr 772 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
264, 1, 20, 21, 23, 24, 25, 5, 6, 7prdsdsval3 17448 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
2726breq1d 5117 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((𝑓𝐷𝑔) ≤ 0 ↔ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ 0))
2811adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
294, 1, 20, 21, 23, 5, 24prdsbascl 17446 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
3029r19.21bi 3229 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
314, 1, 20, 21, 23, 5, 25prdsbascl 17446 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
3231r19.21bi 3229 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
33 xmetcl 24219 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
3428, 30, 32, 33syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
3534fmpttd 7087 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ*)
3635frnd 6696 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ*)
37 0xr 11221 . . . . . . 7 0 ∈ ℝ*
3837a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ*)
3938snssd 4773 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ*)
4036, 39unssd 4155 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
41 supxrleub 13286 . . . 4 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ 0 ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0))
4240, 37, 41sylancl 586 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ 0 ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0))
43 0le0 12287 . . . . . . 7 0 ≤ 0
44 c0ex 11168 . . . . . . . 8 0 ∈ V
45 breq1 5110 . . . . . . . 8 (𝑧 = 0 → (𝑧 ≤ 0 ↔ 0 ≤ 0))
4644, 45ralsn 4645 . . . . . . 7 (∀𝑧 ∈ {0}𝑧 ≤ 0 ↔ 0 ≤ 0)
4743, 46mpbir 231 . . . . . 6 𝑧 ∈ {0}𝑧 ≤ 0
48 ralunb 4160 . . . . . 6 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0 ∧ ∀𝑧 ∈ {0}𝑧 ≤ 0))
4947, 48mpbiran2 710 . . . . 5 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0)
50 ovex 7420 . . . . . . 7 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
5150rgenw 3048 . . . . . 6 𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
52 eqid 2729 . . . . . . 7 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
53 breq1 5110 . . . . . . 7 (𝑧 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑧 ≤ 0 ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0))
5452, 53ralrnmptw 7066 . . . . . 6 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0 ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0))
5551, 54ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0 ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0)
5649, 55bitri 275 . . . 4 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0)
57 xmetge0 24232 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))
5828, 30, 32, 57syl3anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))
5958biantrud 531 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))))
60 xrletri3 13114 . . . . . . . 8 ((((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ* ∧ 0 ∈ ℝ*) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))))
6134, 37, 60sylancl 586 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))))
62 xmeteq0 24226 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (𝑓𝑥) = (𝑔𝑥)))
6328, 30, 32, 62syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (𝑓𝑥) = (𝑔𝑥)))
6459, 61, 633bitr2d 307 . . . . . 6 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ (𝑓𝑥) = (𝑔𝑥)))
6564ralbidva 3154 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ ∀𝑥𝐼 (𝑓𝑥) = (𝑔𝑥)))
66 eqid 2729 . . . . . . . . . 10 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
6766fnmpt 6658 . . . . . . . . 9 (∀𝑥𝐼 𝑅𝑍 → (𝑥𝐼𝑅) Fn 𝐼)
6822, 67syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
6968adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼𝑅) Fn 𝐼)
704, 1, 20, 21, 69, 24prdsbasfn 17434 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 Fn 𝐼)
714, 1, 20, 21, 69, 25prdsbasfn 17434 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 Fn 𝐼)
72 eqfnfv 7003 . . . . . 6 ((𝑓 Fn 𝐼𝑔 Fn 𝐼) → (𝑓 = 𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥) = (𝑔𝑥)))
7370, 71, 72syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥) = (𝑔𝑥)))
7465, 73bitr4d 282 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ 𝑓 = 𝑔))
7556, 74bitrid 283 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ 𝑓 = 𝑔))
7627, 42, 753bitrd 305 . 2 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((𝑓𝐷𝑔) ≤ 0 ↔ 𝑓 = 𝑔))
77263adantr3 1172 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
78773adant3 1132 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
79113ad2antl1 1186 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
80293adantr3 1172 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
81803adant3 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
8281r19.21bi 3229 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
83313adantr3 1172 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
84833adant3 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
8584r19.21bi 3229 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
8679, 82, 85, 33syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
8783ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝑆𝑊)
8893ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝐼𝑋)
89223ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 𝑅𝑍)
90 simp23 1209 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝐵)
914, 1, 87, 88, 89, 5, 90prdsbascl 17446 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 (𝑥) ∈ 𝑉)
9291r19.21bi 3229 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝑥) ∈ 𝑉)
93 xmetcl 24219 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
9479, 92, 82, 93syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
95 simp3l 1202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑓) ∈ ℝ)
9695adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑓) ∈ ℝ)
97 xmetge0 24232 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → 0 ≤ ((𝑥)𝐸(𝑓𝑥)))
9879, 92, 82, 97syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 0 ≤ ((𝑥)𝐸(𝑓𝑥)))
9994fmpttd 7087 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ*)
10099frnd 6696 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
10137a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ∈ ℝ*)
102101snssd 4773 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → {0} ⊆ ℝ*)
103100, 102unssd 4155 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
104 ssun1 4141 . . . . . . . . . . . . . 14 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0})
105 ovex 7420 . . . . . . . . . . . . . . . . 17 ((𝑥)𝐸(𝑓𝑥)) ∈ V
106105elabrex 7216 . . . . . . . . . . . . . . . 16 (𝑥𝐼 → ((𝑥)𝐸(𝑓𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑓𝑥))})
107106adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑓𝑥))})
108 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥)))
109108rnmpt 5921 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) = {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑓𝑥))}
110107, 109eleqtrrdi 2839 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))))
111104, 110sselid 3944 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}))
112 supxrub 13284 . . . . . . . . . . . . 13 (((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0})) → ((𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
113103, 111, 112syl2an2r 685 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
114 simp21 1207 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝑓𝐵)
1154, 1, 87, 88, 89, 90, 114, 5, 6, 7prdsdsval3 17448 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
116115adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
117113, 116breqtrrd 5135 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ≤ (𝐷𝑓))
118 xrrege0 13134 . . . . . . . . . . 11 (((((𝑥)𝐸(𝑓𝑥)) ∈ ℝ* ∧ (𝐷𝑓) ∈ ℝ) ∧ (0 ≤ ((𝑥)𝐸(𝑓𝑥)) ∧ ((𝑥)𝐸(𝑓𝑥)) ≤ (𝐷𝑓))) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ)
11994, 96, 98, 117, 118syl22anc 838 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ)
120 xmetcl 24219 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
12179, 92, 85, 120syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
122 simp3r 1203 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑔) ∈ ℝ)
123122adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑔) ∈ ℝ)
124 xmetge0 24232 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → 0 ≤ ((𝑥)𝐸(𝑔𝑥)))
12579, 92, 85, 124syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 0 ≤ ((𝑥)𝐸(𝑔𝑥)))
126121fmpttd 7087 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ*)
127126frnd 6696 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ⊆ ℝ*)
128127, 102unssd 4155 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
129 ssun1 4141 . . . . . . . . . . . . . 14 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0})
130 ovex 7420 . . . . . . . . . . . . . . . . 17 ((𝑥)𝐸(𝑔𝑥)) ∈ V
131130elabrex 7216 . . . . . . . . . . . . . . . 16 (𝑥𝐼 → ((𝑥)𝐸(𝑔𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑔𝑥))})
132131adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑔𝑥))})
133 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥)))
134133rnmpt 5921 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) = {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑔𝑥))}
135132, 134eleqtrrdi 2839 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))))
136129, 135sselid 3944 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}))
137 supxrub 13284 . . . . . . . . . . . . 13 (((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑥)𝐸(𝑔𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0})) → ((𝑥)𝐸(𝑔𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
138128, 136, 137syl2an2r 685 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
139 simp22 1208 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝑔𝐵)
1404, 1, 87, 88, 89, 90, 139, 5, 6, 7prdsdsval3 17448 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
141140adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
142138, 141breqtrrd 5135 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ≤ (𝐷𝑔))
143 xrrege0 13134 . . . . . . . . . . 11 (((((𝑥)𝐸(𝑔𝑥)) ∈ ℝ* ∧ (𝐷𝑔) ∈ ℝ) ∧ (0 ≤ ((𝑥)𝐸(𝑔𝑥)) ∧ ((𝑥)𝐸(𝑔𝑥)) ≤ (𝐷𝑔))) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
144121, 123, 125, 142, 143syl22anc 838 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
145119, 144readdcld 11203 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))) ∈ ℝ)
14679, 82, 85, 57syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))
147 xmettri2 24228 . . . . . . . . . . 11 ((𝐸 ∈ (∞Met‘𝑉) ∧ ((𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉)) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) +𝑒 ((𝑥)𝐸(𝑔𝑥))))
14879, 92, 82, 85, 147syl13anc 1374 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) +𝑒 ((𝑥)𝐸(𝑔𝑥))))
149119, 144rexaddd 13194 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (((𝑥)𝐸(𝑓𝑥)) +𝑒 ((𝑥)𝐸(𝑔𝑥))) = (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))))
150148, 149breqtrd 5133 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))))
151 xrrege0 13134 . . . . . . . . 9 (((((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ* ∧ (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))) ∈ ℝ) ∧ (0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
15286, 145, 146, 150, 151syl22anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
153 readdcl 11151 . . . . . . . . . 10 (((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ)
1541533ad2ant3 1135 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ)
155154adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ)
156119, 144, 96, 123, 117, 142le2addd 11797 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))) ≤ ((𝐷𝑓) + (𝐷𝑔)))
157152, 145, 155, 150, 156letrd 11331 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔)))
158157ralrimiva 3125 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔)))
15986ralrimiva 3125 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
160 breq1 5110 . . . . . . . 8 (𝑧 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔))))
16152, 160ralrnmptw 7066 . . . . . . 7 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ* → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔))))
162159, 161syl 17 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔))))
163158, 162mpbird 257 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)))
164123ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
165164, 90, 114fovcdmd 7561 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑓) ∈ (0[,]+∞))
166 elxrge0 13418 . . . . . . . . 9 ((𝐷𝑓) ∈ (0[,]+∞) ↔ ((𝐷𝑓) ∈ ℝ* ∧ 0 ≤ (𝐷𝑓)))
167166simprbi 496 . . . . . . . 8 ((𝐷𝑓) ∈ (0[,]+∞) → 0 ≤ (𝐷𝑓))
168165, 167syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ≤ (𝐷𝑓))
169164, 90, 139fovcdmd 7561 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑔) ∈ (0[,]+∞))
170 elxrge0 13418 . . . . . . . . 9 ((𝐷𝑔) ∈ (0[,]+∞) ↔ ((𝐷𝑔) ∈ ℝ* ∧ 0 ≤ (𝐷𝑔)))
171170simprbi 496 . . . . . . . 8 ((𝐷𝑔) ∈ (0[,]+∞) → 0 ≤ (𝐷𝑔))
172169, 171syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ≤ (𝐷𝑔))
17395, 122, 168, 172addge0d 11754 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ≤ ((𝐷𝑓) + (𝐷𝑔)))
174 breq1 5110 . . . . . . 7 (𝑧 = 0 → (𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ 0 ≤ ((𝐷𝑓) + (𝐷𝑔))))
17544, 174ralsn 4645 . . . . . 6 (∀𝑧 ∈ {0}𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ 0 ≤ ((𝐷𝑓) + (𝐷𝑔)))
176173, 175sylibr 234 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ {0}𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)))
177 ralunb 4160 . . . . 5 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ∧ ∀𝑧 ∈ {0}𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔))))
178163, 176, 177sylanbrc 583 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)))
179403adantr3 1172 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
1801793adant3 1132 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
181154rexrd 11224 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ*)
182 supxrleub 13286 . . . . 5 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔))))
183180, 181, 182syl2anc 584 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔))))
184178, 183mpbird 257 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ ((𝐷𝑓) + (𝐷𝑔)))
18578, 184eqbrtrd 5129 . 2 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑓𝐷𝑔) ≤ ((𝐷𝑓) + (𝐷𝑔)))
1863, 15, 19, 76, 185isxmet2d 24215 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  cun 3912  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ran crn 5639  cres 5640   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209   +𝑒 cxad 13070  [,]cicc 13309  Basecbs 17179  distcds 17229  Xscprds 17408  ∞Metcxmet 21249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-prds 17410  df-xmet 21257
This theorem is referenced by:  prdsxmet  24257
  Copyright terms: Public domain W3C validator