Step | Hyp | Ref
| Expression |
1 | | prdsdsf.b |
. . . 4
⊢ 𝐵 = (Base‘𝑌) |
2 | 1 | fvexi 6731 |
. . 3
⊢ 𝐵 ∈ V |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → 𝐵 ∈ V) |
4 | | prdsdsf.y |
. . . 4
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
5 | | prdsdsf.v |
. . . 4
⊢ 𝑉 = (Base‘𝑅) |
6 | | prdsdsf.e |
. . . 4
⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
7 | | prdsdsf.d |
. . . 4
⊢ 𝐷 = (dist‘𝑌) |
8 | | prdsdsf.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
9 | | prdsdsf.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑋) |
10 | | prdsdsf.r |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) |
11 | | prdsdsf.m |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
12 | 4, 1, 5, 6, 7, 8, 9, 10, 11 | prdsdsf 23265 |
. . 3
⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶(0[,]+∞)) |
13 | | iccssxr 13018 |
. . 3
⊢
(0[,]+∞) ⊆ ℝ* |
14 | | fss 6562 |
. . 3
⊢ ((𝐷:(𝐵 × 𝐵)⟶(0[,]+∞) ∧ (0[,]+∞)
⊆ ℝ*) → 𝐷:(𝐵 × 𝐵)⟶ℝ*) |
15 | 12, 13, 14 | sylancl 589 |
. 2
⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶ℝ*) |
16 | 12 | fovrnda 7379 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]+∞)) |
17 | | elxrge0 13045 |
. . . 4
⊢ ((𝑓𝐷𝑔) ∈ (0[,]+∞) ↔ ((𝑓𝐷𝑔) ∈ ℝ* ∧ 0 ≤
(𝑓𝐷𝑔))) |
18 | 17 | simprbi 500 |
. . 3
⊢ ((𝑓𝐷𝑔) ∈ (0[,]+∞) → 0 ≤ (𝑓𝐷𝑔)) |
19 | 16, 18 | syl 17 |
. 2
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 0 ≤ (𝑓𝐷𝑔)) |
20 | 8 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑆 ∈ 𝑊) |
21 | 9 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝐼 ∈ 𝑋) |
22 | 10 | ralrimiva 3105 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑍) |
23 | 22 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑍) |
24 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑓 ∈ 𝐵) |
25 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑔 ∈ 𝐵) |
26 | 4, 1, 20, 21, 23, 24, 25, 5, 6, 7 | prdsdsval3 16990 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
27 | 26 | breq1d 5063 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ((𝑓𝐷𝑔) ≤ 0 ↔ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ 0)) |
28 | 11 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
29 | 4, 1, 20, 21, 23, 5, 24 | prdsbascl 16988 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ 𝑉) |
30 | 29 | r19.21bi 3130 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ 𝑉) |
31 | 4, 1, 20, 21, 23, 5, 25 | prdsbascl 16988 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉) |
32 | 31 | r19.21bi 3130 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ 𝑉) |
33 | | xmetcl 23229 |
. . . . . . . 8
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓‘𝑥) ∈ 𝑉 ∧ (𝑔‘𝑥) ∈ 𝑉) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈
ℝ*) |
34 | 28, 30, 32, 33 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈
ℝ*) |
35 | 34 | fmpttd 6932 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))):𝐼⟶ℝ*) |
36 | 35 | frnd 6553 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ⊆
ℝ*) |
37 | | 0xr 10880 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
38 | 37 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 0 ∈
ℝ*) |
39 | 38 | snssd 4722 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → {0} ⊆
ℝ*) |
40 | 36, 39 | unssd 4100 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆
ℝ*) |
41 | | supxrleub 12916 |
. . . 4
⊢ (((ran
(𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆ ℝ*
∧ 0 ∈ ℝ*) → (sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ 0 ↔ ∀𝑧
∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ 0)) |
42 | 40, 37, 41 | sylancl 589 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ 0 ↔ ∀𝑧
∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ 0)) |
43 | | 0le0 11931 |
. . . . . . 7
⊢ 0 ≤
0 |
44 | | c0ex 10827 |
. . . . . . . 8
⊢ 0 ∈
V |
45 | | breq1 5056 |
. . . . . . . 8
⊢ (𝑧 = 0 → (𝑧 ≤ 0 ↔ 0 ≤ 0)) |
46 | 44, 45 | ralsn 4597 |
. . . . . . 7
⊢
(∀𝑧 ∈
{0}𝑧 ≤ 0 ↔ 0 ≤
0) |
47 | 43, 46 | mpbir 234 |
. . . . . 6
⊢
∀𝑧 ∈
{0}𝑧 ≤
0 |
48 | | ralunb 4105 |
. . . . . 6
⊢
(∀𝑧 ∈
(ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ 0 ↔ (∀𝑧 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ 0 ∧ ∀𝑧 ∈ {0}𝑧 ≤ 0)) |
49 | 47, 48 | mpbiran2 710 |
. . . . 5
⊢
(∀𝑧 ∈
(ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ 0) |
50 | | ovex 7246 |
. . . . . . 7
⊢ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ V |
51 | 50 | rgenw 3073 |
. . . . . 6
⊢
∀𝑥 ∈
𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ V |
52 | | eqid 2737 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) |
53 | | breq1 5056 |
. . . . . . 7
⊢ (𝑧 = ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) → (𝑧 ≤ 0 ↔ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0)) |
54 | 52, 53 | ralrnmptw 6913 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ V → (∀𝑧 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ 0 ↔ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0)) |
55 | 51, 54 | ax-mp 5 |
. . . . 5
⊢
(∀𝑧 ∈
ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ 0 ↔ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0) |
56 | 49, 55 | bitri 278 |
. . . 4
⊢
(∀𝑧 ∈
(ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ 0 ↔ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0) |
57 | | xmetge0 23242 |
. . . . . . . . 9
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓‘𝑥) ∈ 𝑉 ∧ (𝑔‘𝑥) ∈ 𝑉) → 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) |
58 | 28, 30, 32, 57 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) |
59 | 58 | biantrud 535 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0 ↔ (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))))) |
60 | | xrletri3 12744 |
. . . . . . . 8
⊢ ((((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ* ∧ 0 ∈
ℝ*) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) = 0 ↔ (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))))) |
61 | 34, 37, 60 | sylancl 589 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) = 0 ↔ (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))))) |
62 | | xmeteq0 23236 |
. . . . . . . 8
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓‘𝑥) ∈ 𝑉 ∧ (𝑔‘𝑥) ∈ 𝑉) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) = 0 ↔ (𝑓‘𝑥) = (𝑔‘𝑥))) |
63 | 28, 30, 32, 62 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) = 0 ↔ (𝑓‘𝑥) = (𝑔‘𝑥))) |
64 | 59, 61, 63 | 3bitr2d 310 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0 ↔ (𝑓‘𝑥) = (𝑔‘𝑥))) |
65 | 64 | ralbidva 3117 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0 ↔ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) = (𝑔‘𝑥))) |
66 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) |
67 | 66 | fnmpt 6518 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝑅 ∈ 𝑍 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
68 | 22, 67 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
69 | 68 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
70 | 4, 1, 20, 21, 69, 24 | prdsbasfn 16976 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑓 Fn 𝐼) |
71 | 4, 1, 20, 21, 69, 25 | prdsbasfn 16976 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑔 Fn 𝐼) |
72 | | eqfnfv 6852 |
. . . . . 6
⊢ ((𝑓 Fn 𝐼 ∧ 𝑔 Fn 𝐼) → (𝑓 = 𝑔 ↔ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) = (𝑔‘𝑥))) |
73 | 70, 71, 72 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) = (𝑔‘𝑥))) |
74 | 65, 73 | bitr4d 285 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ 0 ↔ 𝑓 = 𝑔)) |
75 | 56, 74 | syl5bb 286 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (∀𝑧 ∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ 0 ↔ 𝑓 = 𝑔)) |
76 | 27, 42, 75 | 3bitrd 308 |
. 2
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ((𝑓𝐷𝑔) ≤ 0 ↔ 𝑓 = 𝑔)) |
77 | 26 | 3adantr3 1173 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
78 | 77 | 3adant3 1134 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (𝑓𝐷𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
79 | 11 | 3ad2antl1 1187 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
80 | 29 | 3adantr3 1173 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ 𝑉) |
81 | 80 | 3adant3 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ 𝑉) |
82 | 81 | r19.21bi 3130 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ 𝑉) |
83 | 31 | 3adantr3 1173 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉) |
84 | 83 | 3adant3 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉) |
85 | 84 | r19.21bi 3130 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ 𝑉) |
86 | 79, 82, 85, 33 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈
ℝ*) |
87 | 8 | 3ad2ant1 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 𝑆 ∈ 𝑊) |
88 | 9 | 3ad2ant1 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 𝐼 ∈ 𝑋) |
89 | 22 | 3ad2ant1 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑍) |
90 | | simp23 1210 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ℎ ∈ 𝐵) |
91 | 4, 1, 87, 88, 89, 5, 90 | prdsbascl 16988 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑥 ∈ 𝐼 (ℎ‘𝑥) ∈ 𝑉) |
92 | 91 | r19.21bi 3130 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (ℎ‘𝑥) ∈ 𝑉) |
93 | | xmetcl 23229 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (ℎ‘𝑥) ∈ 𝑉 ∧ (𝑓‘𝑥) ∈ 𝑉) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈
ℝ*) |
94 | 79, 92, 82, 93 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈
ℝ*) |
95 | | simp3l 1203 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ℎ𝐷𝑓) ∈ ℝ) |
96 | 95 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (ℎ𝐷𝑓) ∈ ℝ) |
97 | | xmetge0 23242 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (ℎ‘𝑥) ∈ 𝑉 ∧ (𝑓‘𝑥) ∈ 𝑉) → 0 ≤ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) |
98 | 79, 92, 82, 97 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → 0 ≤ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) |
99 | 94 | fmpttd 6932 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))):𝐼⟶ℝ*) |
100 | 99 | frnd 6553 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ⊆
ℝ*) |
101 | 37 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 0 ∈
ℝ*) |
102 | 101 | snssd 4722 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → {0} ⊆
ℝ*) |
103 | 100, 102 | unssd 4100 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0}) ⊆
ℝ*) |
104 | | ssun1 4086 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ⊆ (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0}) |
105 | | ovex 7246 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ V |
106 | 105 | elabrex 7056 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐼 → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐼 𝑧 = ((ℎ‘𝑥)𝐸(𝑓‘𝑥))}) |
107 | 106 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐼 𝑧 = ((ℎ‘𝑥)𝐸(𝑓‘𝑥))}) |
108 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) |
109 | 108 | rnmpt 5824 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) = {𝑧 ∣ ∃𝑥 ∈ 𝐼 𝑧 = ((ℎ‘𝑥)𝐸(𝑓‘𝑥))} |
110 | 107, 109 | eleqtrrdi 2849 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥)))) |
111 | 104, 110 | sseldi 3899 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0})) |
112 | | supxrub 12914 |
. . . . . . . . . . . . 13
⊢ (((ran
(𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0}) ⊆ ℝ*
∧ ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0})) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ≤ sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0}), ℝ*, <
)) |
113 | 103, 111,
112 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ≤ sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0}), ℝ*, <
)) |
114 | | simp21 1208 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 𝑓 ∈ 𝐵) |
115 | 4, 1, 87, 88, 89, 90, 114, 5, 6, 7 | prdsdsval3 16990 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ℎ𝐷𝑓) = sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0}), ℝ*, <
)) |
116 | 115 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (ℎ𝐷𝑓) = sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑓‘𝑥))) ∪ {0}), ℝ*, <
)) |
117 | 113, 116 | breqtrrd 5081 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ≤ (ℎ𝐷𝑓)) |
118 | | xrrege0 12764 |
. . . . . . . . . . 11
⊢
(((((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ ℝ* ∧ (ℎ𝐷𝑓) ∈ ℝ) ∧ (0 ≤ ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∧ ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ≤ (ℎ𝐷𝑓))) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ ℝ) |
119 | 94, 96, 98, 117, 118 | syl22anc 839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑓‘𝑥)) ∈ ℝ) |
120 | | xmetcl 23229 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (ℎ‘𝑥) ∈ 𝑉 ∧ (𝑔‘𝑥) ∈ 𝑉) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈
ℝ*) |
121 | 79, 92, 85, 120 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈
ℝ*) |
122 | | simp3r 1204 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ℎ𝐷𝑔) ∈ ℝ) |
123 | 122 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (ℎ𝐷𝑔) ∈ ℝ) |
124 | | xmetge0 23242 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (ℎ‘𝑥) ∈ 𝑉 ∧ (𝑔‘𝑥) ∈ 𝑉) → 0 ≤ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) |
125 | 79, 92, 85, 124 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → 0 ≤ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) |
126 | 121 | fmpttd 6932 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))):𝐼⟶ℝ*) |
127 | 126 | frnd 6553 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ⊆
ℝ*) |
128 | 127, 102 | unssd 4100 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆
ℝ*) |
129 | | ssun1 4086 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ⊆ (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) |
130 | | ovex 7246 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ V |
131 | 130 | elabrex 7056 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐼 → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐼 𝑧 = ((ℎ‘𝑥)𝐸(𝑔‘𝑥))}) |
132 | 131 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐼 𝑧 = ((ℎ‘𝑥)𝐸(𝑔‘𝑥))}) |
133 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) |
134 | 133 | rnmpt 5824 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) = {𝑧 ∣ ∃𝑥 ∈ 𝐼 𝑧 = ((ℎ‘𝑥)𝐸(𝑔‘𝑥))} |
135 | 132, 134 | eleqtrrdi 2849 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥)))) |
136 | 129, 135 | sseldi 3899 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})) |
137 | | supxrub 12914 |
. . . . . . . . . . . . 13
⊢ (((ran
(𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆ ℝ*
∧ ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ (ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
138 | 128, 136,
137 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
139 | | simp22 1209 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 𝑔 ∈ 𝐵) |
140 | 4, 1, 87, 88, 89, 90, 139, 5, 6, 7 | prdsdsval3 16990 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ℎ𝐷𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
141 | 140 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (ℎ𝐷𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
142 | 138, 141 | breqtrrd 5081 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ≤ (ℎ𝐷𝑔)) |
143 | | xrrege0 12764 |
. . . . . . . . . . 11
⊢
(((((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ* ∧ (ℎ𝐷𝑔) ∈ ℝ) ∧ (0 ≤ ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∧ ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ≤ (ℎ𝐷𝑔))) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ) |
144 | 121, 123,
125, 142, 143 | syl22anc 839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ) |
145 | 119, 144 | readdcld 10862 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) + ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∈ ℝ) |
146 | 79, 82, 85, 57 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) |
147 | | xmettri2 23238 |
. . . . . . . . . . 11
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ ((ℎ‘𝑥) ∈ 𝑉 ∧ (𝑓‘𝑥) ∈ 𝑉 ∧ (𝑔‘𝑥) ∈ 𝑉)) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) +𝑒 ((ℎ‘𝑥)𝐸(𝑔‘𝑥)))) |
148 | 79, 92, 82, 85, 147 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) +𝑒 ((ℎ‘𝑥)𝐸(𝑔‘𝑥)))) |
149 | 119, 144 | rexaddd 12824 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) +𝑒 ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) = (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) + ((ℎ‘𝑥)𝐸(𝑔‘𝑥)))) |
150 | 148, 149 | breqtrd 5079 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) + ((ℎ‘𝑥)𝐸(𝑔‘𝑥)))) |
151 | | xrrege0 12764 |
. . . . . . . . 9
⊢
(((((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ* ∧ (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) + ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ∈ ℝ) ∧ (0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∧ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) + ((ℎ‘𝑥)𝐸(𝑔‘𝑥))))) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ) |
152 | 86, 145, 146, 150, 151 | syl22anc 839 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ) |
153 | | readdcl 10812 |
. . . . . . . . . 10
⊢ (((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ) → ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ∈ ℝ) |
154 | 153 | 3ad2ant3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ∈ ℝ) |
155 | 154 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ∈ ℝ) |
156 | 119, 144,
96, 123, 117, 142 | le2addd 11451 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → (((ℎ‘𝑥)𝐸(𝑓‘𝑥)) + ((ℎ‘𝑥)𝐸(𝑔‘𝑥))) ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
157 | 152, 145,
155, 150, 156 | letrd 10989 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
158 | 157 | ralrimiva 3105 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
159 | 86 | ralrimiva 3105 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈
ℝ*) |
160 | | breq1 5056 |
. . . . . . . 8
⊢ (𝑧 = ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) → (𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)))) |
161 | 52, 160 | ralrnmptw 6913 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ* →
(∀𝑧 ∈ ran
(𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)))) |
162 | 159, 161 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (∀𝑧 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)))) |
163 | 158, 162 | mpbird 260 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
164 | 12 | 3ad2ant1 1135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 𝐷:(𝐵 × 𝐵)⟶(0[,]+∞)) |
165 | 164, 90, 114 | fovrnd 7380 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ℎ𝐷𝑓) ∈ (0[,]+∞)) |
166 | | elxrge0 13045 |
. . . . . . . . 9
⊢ ((ℎ𝐷𝑓) ∈ (0[,]+∞) ↔ ((ℎ𝐷𝑓) ∈ ℝ* ∧ 0 ≤
(ℎ𝐷𝑓))) |
167 | 166 | simprbi 500 |
. . . . . . . 8
⊢ ((ℎ𝐷𝑓) ∈ (0[,]+∞) → 0 ≤ (ℎ𝐷𝑓)) |
168 | 165, 167 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 0 ≤ (ℎ𝐷𝑓)) |
169 | 164, 90, 139 | fovrnd 7380 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ℎ𝐷𝑔) ∈ (0[,]+∞)) |
170 | | elxrge0 13045 |
. . . . . . . . 9
⊢ ((ℎ𝐷𝑔) ∈ (0[,]+∞) ↔ ((ℎ𝐷𝑔) ∈ ℝ* ∧ 0 ≤
(ℎ𝐷𝑔))) |
171 | 170 | simprbi 500 |
. . . . . . . 8
⊢ ((ℎ𝐷𝑔) ∈ (0[,]+∞) → 0 ≤ (ℎ𝐷𝑔)) |
172 | 169, 171 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 0 ≤ (ℎ𝐷𝑔)) |
173 | 95, 122, 168, 172 | addge0d 11408 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → 0 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
174 | | breq1 5056 |
. . . . . . 7
⊢ (𝑧 = 0 → (𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ 0 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)))) |
175 | 44, 174 | ralsn 4597 |
. . . . . 6
⊢
(∀𝑧 ∈
{0}𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ 0 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
176 | 173, 175 | sylibr 237 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ {0}𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
177 | | ralunb 4105 |
. . . . 5
⊢
(∀𝑧 ∈
(ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ (∀𝑧 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ∧ ∀𝑧 ∈ {0}𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)))) |
178 | 163, 176,
177 | sylanbrc 586 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
179 | 40 | 3adantr3 1173 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆
ℝ*) |
180 | 179 | 3adant3 1134 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆
ℝ*) |
181 | 154 | rexrd 10883 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ∈
ℝ*) |
182 | | supxrleub 12916 |
. . . . 5
⊢ (((ran
(𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆ ℝ*
∧ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ∈ ℝ*) →
(sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ ∀𝑧 ∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)))) |
183 | 180, 181,
182 | syl2anc 587 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)) ↔ ∀𝑧 ∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑧 ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔)))) |
184 | 178, 183 | mpbird 260 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
185 | 78, 184 | eqbrtrd 5075 |
. 2
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ ((ℎ𝐷𝑓) ∈ ℝ ∧ (ℎ𝐷𝑔) ∈ ℝ)) → (𝑓𝐷𝑔) ≤ ((ℎ𝐷𝑓) + (ℎ𝐷𝑔))) |
186 | 3, 15, 19, 76, 185 | isxmet2d 23225 |
1
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |