MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmetlem Structured version   Visualization version   GIF version

Theorem prdsxmetlem 24399
Description: The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsxmetlem (𝜑𝐷 ∈ (∞Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥   𝑥,𝐵   𝑥,𝐷
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsxmetlem
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsdsf.b . . . 4 𝐵 = (Base‘𝑌)
21fvexi 6934 . . 3 𝐵 ∈ V
32a1i 11 . 2 (𝜑𝐵 ∈ V)
4 prdsdsf.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
5 prdsdsf.v . . . 4 𝑉 = (Base‘𝑅)
6 prdsdsf.e . . . 4 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
7 prdsdsf.d . . . 4 𝐷 = (dist‘𝑌)
8 prdsdsf.s . . . 4 (𝜑𝑆𝑊)
9 prdsdsf.i . . . 4 (𝜑𝐼𝑋)
10 prdsdsf.r . . . 4 ((𝜑𝑥𝐼) → 𝑅𝑍)
11 prdsdsf.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
124, 1, 5, 6, 7, 8, 9, 10, 11prdsdsf 24398 . . 3 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
13 iccssxr 13490 . . 3 (0[,]+∞) ⊆ ℝ*
14 fss 6763 . . 3 ((𝐷:(𝐵 × 𝐵)⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐷:(𝐵 × 𝐵)⟶ℝ*)
1512, 13, 14sylancl 585 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ*)
1612fovcdmda 7621 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]+∞))
17 elxrge0 13517 . . . 4 ((𝑓𝐷𝑔) ∈ (0[,]+∞) ↔ ((𝑓𝐷𝑔) ∈ ℝ* ∧ 0 ≤ (𝑓𝐷𝑔)))
1817simprbi 496 . . 3 ((𝑓𝐷𝑔) ∈ (0[,]+∞) → 0 ≤ (𝑓𝐷𝑔))
1916, 18syl 17 . 2 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ≤ (𝑓𝐷𝑔))
208adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
219adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑋)
2210ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
2322adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑍)
24 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
25 simprr 772 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
264, 1, 20, 21, 23, 24, 25, 5, 6, 7prdsdsval3 17545 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
2726breq1d 5176 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((𝑓𝐷𝑔) ≤ 0 ↔ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ 0))
2811adantlr 714 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
294, 1, 20, 21, 23, 5, 24prdsbascl 17543 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
3029r19.21bi 3257 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
314, 1, 20, 21, 23, 5, 25prdsbascl 17543 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
3231r19.21bi 3257 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
33 xmetcl 24362 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
3428, 30, 32, 33syl3anc 1371 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
3534fmpttd 7149 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ*)
3635frnd 6755 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ*)
37 0xr 11337 . . . . . . 7 0 ∈ ℝ*
3837a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ*)
3938snssd 4834 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ*)
4036, 39unssd 4215 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
41 supxrleub 13388 . . . 4 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ 0 ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0))
4240, 37, 41sylancl 585 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ 0 ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0))
43 0le0 12394 . . . . . . 7 0 ≤ 0
44 c0ex 11284 . . . . . . . 8 0 ∈ V
45 breq1 5169 . . . . . . . 8 (𝑧 = 0 → (𝑧 ≤ 0 ↔ 0 ≤ 0))
4644, 45ralsn 4705 . . . . . . 7 (∀𝑧 ∈ {0}𝑧 ≤ 0 ↔ 0 ≤ 0)
4743, 46mpbir 231 . . . . . 6 𝑧 ∈ {0}𝑧 ≤ 0
48 ralunb 4220 . . . . . 6 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0 ∧ ∀𝑧 ∈ {0}𝑧 ≤ 0))
4947, 48mpbiran2 709 . . . . 5 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0)
50 ovex 7481 . . . . . . 7 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
5150rgenw 3071 . . . . . 6 𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
52 eqid 2740 . . . . . . 7 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
53 breq1 5169 . . . . . . 7 (𝑧 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑧 ≤ 0 ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0))
5452, 53ralrnmptw 7128 . . . . . 6 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0 ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0))
5551, 54ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ 0 ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0)
5649, 55bitri 275 . . . 4 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0)
57 xmetge0 24375 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))
5828, 30, 32, 57syl3anc 1371 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))
5958biantrud 531 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))))
60 xrletri3 13216 . . . . . . . 8 ((((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ* ∧ 0 ∈ ℝ*) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))))
6134, 37, 60sylancl 585 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))))
62 xmeteq0 24369 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (𝑓𝑥) = (𝑔𝑥)))
6328, 30, 32, 62syl3anc 1371 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) = 0 ↔ (𝑓𝑥) = (𝑔𝑥)))
6459, 61, 633bitr2d 307 . . . . . 6 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ (𝑓𝑥) = (𝑔𝑥)))
6564ralbidva 3182 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ ∀𝑥𝐼 (𝑓𝑥) = (𝑔𝑥)))
66 eqid 2740 . . . . . . . . . 10 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
6766fnmpt 6720 . . . . . . . . 9 (∀𝑥𝐼 𝑅𝑍 → (𝑥𝐼𝑅) Fn 𝐼)
6822, 67syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
6968adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼𝑅) Fn 𝐼)
704, 1, 20, 21, 69, 24prdsbasfn 17531 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 Fn 𝐼)
714, 1, 20, 21, 69, 25prdsbasfn 17531 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 Fn 𝐼)
72 eqfnfv 7064 . . . . . 6 ((𝑓 Fn 𝐼𝑔 Fn 𝐼) → (𝑓 = 𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥) = (𝑔𝑥)))
7370, 71, 72syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥) = (𝑔𝑥)))
7465, 73bitr4d 282 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ 0 ↔ 𝑓 = 𝑔))
7556, 74bitrid 283 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ 0 ↔ 𝑓 = 𝑔))
7627, 42, 753bitrd 305 . 2 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((𝑓𝐷𝑔) ≤ 0 ↔ 𝑓 = 𝑔))
77263adantr3 1171 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
78773adant3 1132 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
79113ad2antl1 1185 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
80293adantr3 1171 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
81803adant3 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
8281r19.21bi 3257 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
83313adantr3 1171 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
84833adant3 1132 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
8584r19.21bi 3257 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
8679, 82, 85, 33syl3anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
8783ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝑆𝑊)
8893ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝐼𝑋)
89223ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 𝑅𝑍)
90 simp23 1208 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝐵)
914, 1, 87, 88, 89, 5, 90prdsbascl 17543 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 (𝑥) ∈ 𝑉)
9291r19.21bi 3257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝑥) ∈ 𝑉)
93 xmetcl 24362 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
9479, 92, 82, 93syl3anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
95 simp3l 1201 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑓) ∈ ℝ)
9695adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑓) ∈ ℝ)
97 xmetge0 24375 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → 0 ≤ ((𝑥)𝐸(𝑓𝑥)))
9879, 92, 82, 97syl3anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 0 ≤ ((𝑥)𝐸(𝑓𝑥)))
9994fmpttd 7149 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ*)
10099frnd 6755 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
10137a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ∈ ℝ*)
102101snssd 4834 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → {0} ⊆ ℝ*)
103100, 102unssd 4215 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
104 ssun1 4201 . . . . . . . . . . . . . 14 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0})
105 ovex 7481 . . . . . . . . . . . . . . . . 17 ((𝑥)𝐸(𝑓𝑥)) ∈ V
106105elabrex 7279 . . . . . . . . . . . . . . . 16 (𝑥𝐼 → ((𝑥)𝐸(𝑓𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑓𝑥))})
107106adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑓𝑥))})
108 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥)))
109108rnmpt 5980 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) = {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑓𝑥))}
110107, 109eleqtrrdi 2855 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))))
111104, 110sselid 4006 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}))
112 supxrub 13386 . . . . . . . . . . . . 13 (((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0})) → ((𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
113103, 111, 112syl2an2r 684 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
114 simp21 1206 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝑓𝐵)
1154, 1, 87, 88, 89, 90, 114, 5, 6, 7prdsdsval3 17545 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
116115adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
117113, 116breqtrrd 5194 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ≤ (𝐷𝑓))
118 xrrege0 13236 . . . . . . . . . . 11 (((((𝑥)𝐸(𝑓𝑥)) ∈ ℝ* ∧ (𝐷𝑓) ∈ ℝ) ∧ (0 ≤ ((𝑥)𝐸(𝑓𝑥)) ∧ ((𝑥)𝐸(𝑓𝑥)) ≤ (𝐷𝑓))) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ)
11994, 96, 98, 117, 118syl22anc 838 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑓𝑥)) ∈ ℝ)
120 xmetcl 24362 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
12179, 92, 85, 120syl3anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
122 simp3r 1202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑔) ∈ ℝ)
123122adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑔) ∈ ℝ)
124 xmetge0 24375 . . . . . . . . . . . 12 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → 0 ≤ ((𝑥)𝐸(𝑔𝑥)))
12579, 92, 85, 124syl3anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 0 ≤ ((𝑥)𝐸(𝑔𝑥)))
126121fmpttd 7149 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ*)
127126frnd 6755 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ⊆ ℝ*)
128127, 102unssd 4215 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
129 ssun1 4201 . . . . . . . . . . . . . 14 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0})
130 ovex 7481 . . . . . . . . . . . . . . . . 17 ((𝑥)𝐸(𝑔𝑥)) ∈ V
131130elabrex 7279 . . . . . . . . . . . . . . . 16 (𝑥𝐼 → ((𝑥)𝐸(𝑔𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑔𝑥))})
132131adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑔𝑥))})
133 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥)))
134133rnmpt 5980 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) = {𝑧 ∣ ∃𝑥𝐼 𝑧 = ((𝑥)𝐸(𝑔𝑥))}
135132, 134eleqtrrdi 2855 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))))
136129, 135sselid 4006 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}))
137 supxrub 13386 . . . . . . . . . . . . 13 (((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑥)𝐸(𝑔𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0})) → ((𝑥)𝐸(𝑔𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
138128, 136, 137syl2an2r 684 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
139 simp22 1207 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝑔𝐵)
1404, 1, 87, 88, 89, 90, 139, 5, 6, 7prdsdsval3 17545 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
141140adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
142138, 141breqtrrd 5194 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ≤ (𝐷𝑔))
143 xrrege0 13236 . . . . . . . . . . 11 (((((𝑥)𝐸(𝑔𝑥)) ∈ ℝ* ∧ (𝐷𝑔) ∈ ℝ) ∧ (0 ≤ ((𝑥)𝐸(𝑔𝑥)) ∧ ((𝑥)𝐸(𝑔𝑥)) ≤ (𝐷𝑔))) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
144121, 123, 125, 142, 143syl22anc 838 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
145119, 144readdcld 11319 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))) ∈ ℝ)
14679, 82, 85, 57syl3anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)))
147 xmettri2 24371 . . . . . . . . . . 11 ((𝐸 ∈ (∞Met‘𝑉) ∧ ((𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉)) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) +𝑒 ((𝑥)𝐸(𝑔𝑥))))
14879, 92, 82, 85, 147syl13anc 1372 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) +𝑒 ((𝑥)𝐸(𝑔𝑥))))
149119, 144rexaddd 13296 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (((𝑥)𝐸(𝑓𝑥)) +𝑒 ((𝑥)𝐸(𝑔𝑥))) = (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))))
150148, 149breqtrd 5192 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))))
151 xrrege0 13236 . . . . . . . . 9 (((((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ* ∧ (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))) ∈ ℝ) ∧ (0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
15286, 145, 146, 150, 151syl22anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
153 readdcl 11267 . . . . . . . . . 10 (((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ)
1541533ad2ant3 1135 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ)
155154adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ)
156119, 144, 96, 123, 117, 142le2addd 11909 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → (((𝑥)𝐸(𝑓𝑥)) + ((𝑥)𝐸(𝑔𝑥))) ≤ ((𝐷𝑓) + (𝐷𝑔)))
157152, 145, 155, 150, 156letrd 11447 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔)))
158157ralrimiva 3152 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔)))
15986ralrimiva 3152 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ*)
160 breq1 5169 . . . . . . . 8 (𝑧 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔))))
16152, 160ralrnmptw 7128 . . . . . . 7 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ* → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔))))
162159, 161syl 17 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ ((𝐷𝑓) + (𝐷𝑔))))
163158, 162mpbird 257 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)))
164123ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
165164, 90, 114fovcdmd 7622 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑓) ∈ (0[,]+∞))
166 elxrge0 13517 . . . . . . . . 9 ((𝐷𝑓) ∈ (0[,]+∞) ↔ ((𝐷𝑓) ∈ ℝ* ∧ 0 ≤ (𝐷𝑓)))
167166simprbi 496 . . . . . . . 8 ((𝐷𝑓) ∈ (0[,]+∞) → 0 ≤ (𝐷𝑓))
168165, 167syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ≤ (𝐷𝑓))
169164, 90, 139fovcdmd 7622 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝐷𝑔) ∈ (0[,]+∞))
170 elxrge0 13517 . . . . . . . . 9 ((𝐷𝑔) ∈ (0[,]+∞) ↔ ((𝐷𝑔) ∈ ℝ* ∧ 0 ≤ (𝐷𝑔)))
171170simprbi 496 . . . . . . . 8 ((𝐷𝑔) ∈ (0[,]+∞) → 0 ≤ (𝐷𝑔))
172169, 171syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ≤ (𝐷𝑔))
17395, 122, 168, 172addge0d 11866 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → 0 ≤ ((𝐷𝑓) + (𝐷𝑔)))
174 breq1 5169 . . . . . . 7 (𝑧 = 0 → (𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ 0 ≤ ((𝐷𝑓) + (𝐷𝑔))))
17544, 174ralsn 4705 . . . . . 6 (∀𝑧 ∈ {0}𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ 0 ≤ ((𝐷𝑓) + (𝐷𝑔)))
176173, 175sylibr 234 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ {0}𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)))
177 ralunb 4220 . . . . 5 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)) ∧ ∀𝑧 ∈ {0}𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔))))
178163, 176, 177sylanbrc 582 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔)))
179403adantr3 1171 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
1801793adant3 1132 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
181154rexrd 11340 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ*)
182 supxrleub 13388 . . . . 5 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝐷𝑓) + (𝐷𝑔)) ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔))))
183180, 181, 182syl2anc 583 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ ((𝐷𝑓) + (𝐷𝑔)) ↔ ∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑧 ≤ ((𝐷𝑓) + (𝐷𝑔))))
184178, 183mpbird 257 . . 3 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ ((𝐷𝑓) + (𝐷𝑔)))
18578, 184eqbrtrd 5188 . 2 ((𝜑 ∧ (𝑓𝐵𝑔𝐵𝐵) ∧ ((𝐷𝑓) ∈ ℝ ∧ (𝐷𝑔) ∈ ℝ)) → (𝑓𝐷𝑔) ≤ ((𝐷𝑓) + (𝐷𝑔)))
1863, 15, 19, 76, 185isxmet2d 24358 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  0cc0 11184   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325   +𝑒 cxad 13173  [,]cicc 13410  Basecbs 17258  distcds 17320  Xscprds 17505  ∞Metcxmet 21372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-prds 17507  df-xmet 21380
This theorem is referenced by:  prdsxmet  24400
  Copyright terms: Public domain W3C validator