MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Structured version   Visualization version   GIF version

Theorem lss1d 19732
Description: One-dimensional subspace (or zero-dimensional if 𝑋 is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v 𝑉 = (Base‘𝑊)
lss1d.f 𝐹 = (Scalar‘𝑊)
lss1d.t · = ( ·𝑠𝑊)
lss1d.k 𝐾 = (Base‘𝐹)
lss1d.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1d ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆)
Distinct variable groups:   𝑣,𝑘,𝐾   · ,𝑘,𝑣   𝑘,𝑉,𝑣   𝑘,𝐹   𝑘,𝑊,𝑣   𝑘,𝑋,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑘)   𝐹(𝑣)

Proof of Theorem lss1d
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3 𝐹 = (Scalar‘𝑊)
21a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 = (Scalar‘𝑊))
3 lss1d.k . . 3 𝐾 = (Base‘𝐹)
43a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐾 = (Base‘𝐹))
5 lss1d.v . . 3 𝑉 = (Base‘𝑊)
65a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑉 = (Base‘𝑊))
7 eqidd 2802 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (+g𝑊) = (+g𝑊))
8 lss1d.t . . 3 · = ( ·𝑠𝑊)
98a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → · = ( ·𝑠𝑊))
10 lss1d.s . . 3 𝑆 = (LSubSp‘𝑊)
1110a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑆 = (LSubSp‘𝑊))
125, 1, 8, 3lmodvscl 19648 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘𝐾𝑋𝑉) → (𝑘 · 𝑋) ∈ 𝑉)
13123expa 1115 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑘𝐾) ∧ 𝑋𝑉) → (𝑘 · 𝑋) ∈ 𝑉)
1413an32s 651 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ 𝑉)
15 eleq1a 2888 . . . . 5 ((𝑘 · 𝑋) ∈ 𝑉 → (𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1614, 15syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1716rexlimdva 3246 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣𝑉))
1817abssdv 3999 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ 𝑉)
19 eqid 2801 . . . . 5 (0g𝐹) = (0g𝐹)
201, 3, 19lmod0cl 19657 . . . 4 (𝑊 ∈ LMod → (0g𝐹) ∈ 𝐾)
2120adantr 484 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (0g𝐹) ∈ 𝐾)
22 nfcv 2958 . . . 4 𝑘(0g𝐹)
23 nfre1 3268 . . . . . 6 𝑘𝑘𝐾 𝑣 = (𝑘 · 𝑋)
2423nfab 2964 . . . . 5 𝑘{𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}
25 nfcv 2958 . . . . 5 𝑘
2624, 25nfne 3090 . . . 4 𝑘{𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅
27 biidd 265 . . . 4 (𝑘 = (0g𝐹) → ({𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅ ↔ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅))
28 ovex 7172 . . . . . 6 (𝑘 · 𝑋) ∈ V
2928elabrex 6984 . . . . 5 (𝑘𝐾 → (𝑘 · 𝑋) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
3029ne0d 4254 . . . 4 (𝑘𝐾 → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3122, 26, 27, 30vtoclgaf 3524 . . 3 ((0g𝐹) ∈ 𝐾 → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
3221, 31syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ≠ ∅)
33 vex 3447 . . . . . . . . . . 11 𝑎 ∈ V
34 eqeq1 2805 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑎 = (𝑘 · 𝑋)))
3534rexbidv 3259 . . . . . . . . . . 11 (𝑣 = 𝑎 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑎 = (𝑘 · 𝑋)))
3633, 35elab 3618 . . . . . . . . . 10 (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑎 = (𝑘 · 𝑋))
37 oveq1 7146 . . . . . . . . . . . 12 (𝑘 = 𝑦 → (𝑘 · 𝑋) = (𝑦 · 𝑋))
3837eqeq2d 2812 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑎 = (𝑘 · 𝑋) ↔ 𝑎 = (𝑦 · 𝑋)))
3938cbvrexvw 3400 . . . . . . . . . 10 (∃𝑘𝐾 𝑎 = (𝑘 · 𝑋) ↔ ∃𝑦𝐾 𝑎 = (𝑦 · 𝑋))
4036, 39bitri 278 . . . . . . . . 9 (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑦𝐾 𝑎 = (𝑦 · 𝑋))
41 vex 3447 . . . . . . . . . . 11 𝑏 ∈ V
42 eqeq1 2805 . . . . . . . . . . . 12 (𝑣 = 𝑏 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑏 = (𝑘 · 𝑋)))
4342rexbidv 3259 . . . . . . . . . . 11 (𝑣 = 𝑏 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑏 = (𝑘 · 𝑋)))
4441, 43elab 3618 . . . . . . . . . 10 (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑏 = (𝑘 · 𝑋))
45 oveq1 7146 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝑘 · 𝑋) = (𝑧 · 𝑋))
4645eqeq2d 2812 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝑏 = (𝑘 · 𝑋) ↔ 𝑏 = (𝑧 · 𝑋)))
4746cbvrexvw 3400 . . . . . . . . . 10 (∃𝑘𝐾 𝑏 = (𝑘 · 𝑋) ↔ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋))
4844, 47bitri 278 . . . . . . . . 9 (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋))
4940, 48anbi12i 629 . . . . . . . 8 ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) ↔ (∃𝑦𝐾 𝑎 = (𝑦 · 𝑋) ∧ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋)))
50 reeanv 3323 . . . . . . . 8 (∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) ↔ (∃𝑦𝐾 𝑎 = (𝑦 · 𝑋) ∧ ∃𝑧𝐾 𝑏 = (𝑧 · 𝑋)))
5149, 50bitr4i 281 . . . . . . 7 ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) ↔ ∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)))
52 simpll 766 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑊 ∈ LMod)
53 simprr 772 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑥𝐾)
54 simprll 778 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑦𝐾)
55 eqid 2801 . . . . . . . . . . . . . . 15 (.r𝐹) = (.r𝐹)
561, 3, 55lmodmcl 19643 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝐹)𝑦) ∈ 𝐾)
5752, 53, 54, 56syl3anc 1368 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (𝑥(.r𝐹)𝑦) ∈ 𝐾)
58 simprlr 779 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑧𝐾)
59 eqid 2801 . . . . . . . . . . . . . 14 (+g𝐹) = (+g𝐹)
601, 3, 59lmodacl 19642 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (𝑥(.r𝐹)𝑦) ∈ 𝐾𝑧𝐾) → ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾)
6152, 57, 58, 60syl3anc 1368 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾)
62 simplr 768 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → 𝑋𝑉)
63 eqid 2801 . . . . . . . . . . . . . . 15 (+g𝑊) = (+g𝑊)
645, 63, 1, 8, 3, 59lmodvsdir 19655 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((𝑥(.r𝐹)𝑦) ∈ 𝐾𝑧𝐾𝑋𝑉)) → (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋) = (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)))
6552, 57, 58, 62, 64syl13anc 1369 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋) = (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)))
665, 1, 8, 3, 55lmodvsass 19656 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐾𝑋𝑉)) → ((𝑥(.r𝐹)𝑦) · 𝑋) = (𝑥 · (𝑦 · 𝑋)))
6752, 53, 54, 62, 66syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥(.r𝐹)𝑦) · 𝑋) = (𝑥 · (𝑦 · 𝑋)))
6867oveq1d 7154 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → (((𝑥(.r𝐹)𝑦) · 𝑋)(+g𝑊)(𝑧 · 𝑋)) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
6965, 68eqtr2d 2837 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋))
70 oveq1 7146 . . . . . . . . . . . . 13 (𝑘 = ((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) → (𝑘 · 𝑋) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋))
7170rspceeqv 3589 . . . . . . . . . . . 12 ((((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) ∈ 𝐾 ∧ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (((𝑥(.r𝐹)𝑦)(+g𝐹)𝑧) · 𝑋)) → ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋))
7261, 69, 71syl2anc 587 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋))
73 oveq2 7147 . . . . . . . . . . . . . 14 (𝑎 = (𝑦 · 𝑋) → (𝑥 · 𝑎) = (𝑥 · (𝑦 · 𝑋)))
74 oveq12 7148 . . . . . . . . . . . . . 14 (((𝑥 · 𝑎) = (𝑥 · (𝑦 · 𝑋)) ∧ 𝑏 = (𝑧 · 𝑋)) → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7573, 74sylan 583 . . . . . . . . . . . . 13 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ((𝑥 · 𝑎)(+g𝑊)𝑏) = ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)))
7675eqeq1d 2803 . . . . . . . . . . . 12 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋) ↔ ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋)))
7776rexbidv 3259 . . . . . . . . . . 11 ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 ((𝑥 · (𝑦 · 𝑋))(+g𝑊)(𝑧 · 𝑋)) = (𝑘 · 𝑋)))
7872, 77syl5ibrcom 250 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ ((𝑦𝐾𝑧𝐾) ∧ 𝑥𝐾)) → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
7978expr 460 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑦𝐾𝑧𝐾)) → (𝑥𝐾 → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8079com23 86 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8180rexlimdvva 3256 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑦𝐾𝑧𝐾 (𝑎 = (𝑦 · 𝑋) ∧ 𝑏 = (𝑧 · 𝑋)) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8251, 81syl5bi 245 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}) → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))))
8382expcomd 420 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑥𝐾 → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))))
8483com24 95 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑥𝐾 → (𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → (𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))))
85843imp2 1346 . . 3 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑥𝐾𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})) → ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))
86 ovex 7172 . . . 4 ((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ V
87 eqeq1 2805 . . . . 5 (𝑣 = ((𝑥 · 𝑎)(+g𝑊)𝑏) → (𝑣 = (𝑘 · 𝑋) ↔ ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
8887rexbidv 3259 . . . 4 (𝑣 = ((𝑥 · 𝑎)(+g𝑊)𝑏) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋)))
8986, 88elab 3618 . . 3 (((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 ((𝑥 · 𝑎)(+g𝑊)𝑏) = (𝑘 · 𝑋))
9085, 89sylibr 237 . 2 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ (𝑥𝐾𝑎 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∧ 𝑏 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})) → ((𝑥 · 𝑎)(+g𝑊)𝑏) ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
912, 4, 6, 7, 9, 11, 18, 32, 90islssd 19704 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  {cab 2779  wne 2990  wrex 3110  c0 4246  cfv 6328  (class class class)co 7139  Basecbs 16479  +gcplusg 16561  .rcmulr 16562  Scalarcsca 16564   ·𝑠 cvsca 16565  0gc0g 16709  LModclmod 19631  LSubSpclss 19700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-mgp 19237  df-ring 19296  df-lmod 19633  df-lss 19701
This theorem is referenced by:  lspsn  19771
  Copyright terms: Public domain W3C validator