![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjssi | Structured version Visualization version GIF version |
Description: Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
Ref | Expression |
---|---|
eldisjssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
eldisjssi | ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | eldisjss 37912 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3948 ElDisj weldisj 37383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-coss 37585 df-cnvrefrel 37701 df-funALTV 37856 df-disjALTV 37879 df-eldisj 37881 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |