Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjssi Structured version   Visualization version   GIF version

Theorem eldisjssi 38644
Description: Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.)
Hypothesis
Ref Expression
eldisjssi.1 𝐴𝐵
Assertion
Ref Expression
eldisjssi ( ElDisj 𝐵 → ElDisj 𝐴)

Proof of Theorem eldisjssi
StepHypRef Expression
1 eldisjssi.1 . 2 𝐴𝐵
2 eldisjss 38643 . 2 (𝐴𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴))
31, 2ax-mp 5 1 ( ElDisj 𝐵 → ElDisj 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3970   ElDisj weldisj 38120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5170  df-opab 5232  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-coss 38316  df-cnvrefrel 38432  df-funALTV 38587  df-disjALTV 38610  df-eldisj 38612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator