Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfvne0 | Structured version Visualization version GIF version |
Description: If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024.) |
Ref | Expression |
---|---|
elfvne0 | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐹 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4265 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → (𝐹‘𝐵) ≠ ∅) | |
2 | fveq1 6755 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹‘𝐵) = (∅‘𝐵)) | |
3 | 0fv 6795 | . . . 4 ⊢ (∅‘𝐵) = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . . 3 ⊢ (𝐹 = ∅ → (𝐹‘𝐵) = ∅) |
5 | 4 | necon3i 2975 | . 2 ⊢ ((𝐹‘𝐵) ≠ ∅ → 𝐹 ≠ ∅) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐹 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 |
This theorem is referenced by: neircl 46086 |
Copyright terms: Public domain | W3C validator |