| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfvne0 | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024.) |
| Ref | Expression |
|---|---|
| elfvne0 | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐹 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4286 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → (𝐹‘𝐵) ≠ ∅) | |
| 2 | fveq1 6816 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹‘𝐵) = (∅‘𝐵)) | |
| 3 | 0fv 6858 | . . . 4 ⊢ (∅‘𝐵) = ∅ | |
| 4 | 2, 3 | eqtrdi 2782 | . . 3 ⊢ (𝐹 = ∅ → (𝐹‘𝐵) = ∅) |
| 5 | 4 | necon3i 2960 | . 2 ⊢ ((𝐹‘𝐵) ≠ ∅ → 𝐹 ≠ ∅) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐹 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-dm 5621 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: neircl 48936 sectrcl 49054 invrcl 49056 isorcl 49065 catcrcl 49427 |
| Copyright terms: Public domain | W3C validator |