Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfvne0 Structured version   Visualization version   GIF version

Theorem elfvne0 48880
Description: If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024.)
Assertion
Ref Expression
elfvne0 (𝐴 ∈ (𝐹𝐵) → 𝐹 ≠ ∅)

Proof of Theorem elfvne0
StepHypRef Expression
1 ne0i 4286 . 2 (𝐴 ∈ (𝐹𝐵) → (𝐹𝐵) ≠ ∅)
2 fveq1 6816 . . . 4 (𝐹 = ∅ → (𝐹𝐵) = (∅‘𝐵))
3 0fv 6858 . . . 4 (∅‘𝐵) = ∅
42, 3eqtrdi 2782 . . 3 (𝐹 = ∅ → (𝐹𝐵) = ∅)
54necon3i 2960 . 2 ((𝐹𝐵) ≠ ∅ → 𝐹 ≠ ∅)
61, 5syl 17 1 (𝐴 ∈ (𝐹𝐵) → 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  c0 4278  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-dm 5621  df-iota 6432  df-fv 6484
This theorem is referenced by:  neircl  48936  sectrcl  49054  invrcl  49056  isorcl  49065  catcrcl  49427
  Copyright terms: Public domain W3C validator