Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfvne0 Structured version   Visualization version   GIF version

Theorem elfvne0 46064
Description: If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024.)
Assertion
Ref Expression
elfvne0 (𝐴 ∈ (𝐹𝐵) → 𝐹 ≠ ∅)

Proof of Theorem elfvne0
StepHypRef Expression
1 ne0i 4265 . 2 (𝐴 ∈ (𝐹𝐵) → (𝐹𝐵) ≠ ∅)
2 fveq1 6755 . . . 4 (𝐹 = ∅ → (𝐹𝐵) = (∅‘𝐵))
3 0fv 6795 . . . 4 (∅‘𝐵) = ∅
42, 3eqtrdi 2795 . . 3 (𝐹 = ∅ → (𝐹𝐵) = ∅)
54necon3i 2975 . 2 ((𝐹𝐵) ≠ ∅ → 𝐹 ≠ ∅)
61, 5syl 17 1 (𝐴 ∈ (𝐹𝐵) → 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  c0 4253  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426
This theorem is referenced by:  neircl  46086
  Copyright terms: Public domain W3C validator