Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofeu Structured version   Visualization version   GIF version

Theorem mofeu 48833
Description: The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
mofeu.1 𝐺 = (𝐴 × 𝐵)
mofeu.2 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
mofeu.3 (𝜑 → ∃*𝑥 𝑥𝐵)
Assertion
Ref Expression
mofeu (𝜑 → (𝐹:𝐴𝐵𝐹 = 𝐺))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mofeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mofeu.2 . . . . 5 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
21imp 406 . . . 4 ((𝜑𝐵 = ∅) → 𝐴 = ∅)
3 f00 6710 . . . . 5 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
43rbaib 538 . . . 4 (𝐴 = ∅ → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅))
52, 4syl 17 . . 3 ((𝜑𝐵 = ∅) → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅))
6 feq3 6636 . . . 4 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐹:𝐴⟶∅))
76adantl 481 . . 3 ((𝜑𝐵 = ∅) → (𝐹:𝐴𝐵𝐹:𝐴⟶∅))
8 mofeu.1 . . . . . 6 𝐺 = (𝐴 × 𝐵)
9 xpeq2 5644 . . . . . . 7 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
10 xp0 6111 . . . . . . 7 (𝐴 × ∅) = ∅
119, 10eqtrdi 2780 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
128, 11eqtrid 2776 . . . . 5 (𝐵 = ∅ → 𝐺 = ∅)
1312adantl 481 . . . 4 ((𝜑𝐵 = ∅) → 𝐺 = ∅)
1413eqeq2d 2740 . . 3 ((𝜑𝐵 = ∅) → (𝐹 = 𝐺𝐹 = ∅))
155, 7, 143bitr4d 311 . 2 ((𝜑𝐵 = ∅) → (𝐹:𝐴𝐵𝐹 = 𝐺))
16 19.42v 1953 . . 3 (∃𝑦(𝜑𝐵 = {𝑦}) ↔ (𝜑 ∧ ∃𝑦 𝐵 = {𝑦}))
17 fconst2g 7143 . . . . . . . 8 (𝑦 ∈ V → (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦})))
1817elv 3443 . . . . . . 7 (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦}))
19 feq3 6636 . . . . . . . 8 (𝐵 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴⟶{𝑦}))
20 xpeq2 5644 . . . . . . . . 9 (𝐵 = {𝑦} → (𝐴 × 𝐵) = (𝐴 × {𝑦}))
2120eqeq2d 2740 . . . . . . . 8 (𝐵 = {𝑦} → (𝐹 = (𝐴 × 𝐵) ↔ 𝐹 = (𝐴 × {𝑦})))
2219, 21bibi12d 345 . . . . . . 7 (𝐵 = {𝑦} → ((𝐹:𝐴𝐵𝐹 = (𝐴 × 𝐵)) ↔ (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦}))))
2318, 22mpbiri 258 . . . . . 6 (𝐵 = {𝑦} → (𝐹:𝐴𝐵𝐹 = (𝐴 × 𝐵)))
248eqeq2i 2742 . . . . . 6 (𝐹 = 𝐺𝐹 = (𝐴 × 𝐵))
2523, 24bitr4di 289 . . . . 5 (𝐵 = {𝑦} → (𝐹:𝐴𝐵𝐹 = 𝐺))
2625adantl 481 . . . 4 ((𝜑𝐵 = {𝑦}) → (𝐹:𝐴𝐵𝐹 = 𝐺))
2726exlimiv 1930 . . 3 (∃𝑦(𝜑𝐵 = {𝑦}) → (𝐹:𝐴𝐵𝐹 = 𝐺))
2816, 27sylbir 235 . 2 ((𝜑 ∧ ∃𝑦 𝐵 = {𝑦}) → (𝐹:𝐴𝐵𝐹 = 𝐺))
29 mofeu.3 . . 3 (𝜑 → ∃*𝑥 𝑥𝐵)
30 mo0sn 48801 . . 3 (∃*𝑥 𝑥𝐵 ↔ (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}))
3129, 30sylib 218 . 2 (𝜑 → (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}))
3215, 28, 31mpjaodan 960 1 (𝜑 → (𝐹:𝐴𝐵𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  Vcvv 3438  c0 4286  {csn 4579   × cxp 5621  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  functhinclem1  49430  functhinclem3  49432
  Copyright terms: Public domain W3C validator