Step | Hyp | Ref
| Expression |
1 | | mofeu.2 |
. . . . 5
⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
2 | 1 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
3 | | f00 6640 |
. . . . 5
⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
4 | 3 | rbaib 538 |
. . . 4
⊢ (𝐴 = ∅ → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅)) |
5 | 2, 4 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅)) |
6 | | feq3 6567 |
. . . 4
⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) |
7 | 6 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) |
8 | | mofeu.1 |
. . . . . 6
⊢ 𝐺 = (𝐴 × 𝐵) |
9 | | xpeq2 5601 |
. . . . . . 7
⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) |
10 | | xp0 6050 |
. . . . . . 7
⊢ (𝐴 × ∅) =
∅ |
11 | 9, 10 | eqtrdi 2795 |
. . . . . 6
⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
12 | 8, 11 | syl5eq 2791 |
. . . . 5
⊢ (𝐵 = ∅ → 𝐺 = ∅) |
13 | 12 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐺 = ∅) |
14 | 13 | eqeq2d 2749 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹 = 𝐺 ↔ 𝐹 = ∅)) |
15 | 5, 7, 14 | 3bitr4d 310 |
. 2
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
16 | | 19.42v 1958 |
. . 3
⊢
(∃𝑦(𝜑 ∧ 𝐵 = {𝑦}) ↔ (𝜑 ∧ ∃𝑦 𝐵 = {𝑦})) |
17 | | fconst2g 7060 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦}))) |
18 | 17 | elv 3428 |
. . . . . . 7
⊢ (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦})) |
19 | | feq3 6567 |
. . . . . . . 8
⊢ (𝐵 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶{𝑦})) |
20 | | xpeq2 5601 |
. . . . . . . . 9
⊢ (𝐵 = {𝑦} → (𝐴 × 𝐵) = (𝐴 × {𝑦})) |
21 | 20 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝐵 = {𝑦} → (𝐹 = (𝐴 × 𝐵) ↔ 𝐹 = (𝐴 × {𝑦}))) |
22 | 19, 21 | bibi12d 345 |
. . . . . . 7
⊢ (𝐵 = {𝑦} → ((𝐹:𝐴⟶𝐵 ↔ 𝐹 = (𝐴 × 𝐵)) ↔ (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦})))) |
23 | 18, 22 | mpbiri 257 |
. . . . . 6
⊢ (𝐵 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = (𝐴 × 𝐵))) |
24 | 8 | eqeq2i 2751 |
. . . . . 6
⊢ (𝐹 = 𝐺 ↔ 𝐹 = (𝐴 × 𝐵)) |
25 | 23, 24 | bitr4di 288 |
. . . . 5
⊢ (𝐵 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
26 | 25 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = {𝑦}) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
27 | 26 | exlimiv 1934 |
. . 3
⊢
(∃𝑦(𝜑 ∧ 𝐵 = {𝑦}) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
28 | 16, 27 | sylbir 234 |
. 2
⊢ ((𝜑 ∧ ∃𝑦 𝐵 = {𝑦}) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
29 | | mofeu.3 |
. . 3
⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) |
30 | | mo0sn 46049 |
. . 3
⊢
(∃*𝑥 𝑥 ∈ 𝐵 ↔ (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦})) |
31 | 29, 30 | sylib 217 |
. 2
⊢ (𝜑 → (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦})) |
32 | 15, 28, 31 | mpjaodan 955 |
1
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |