Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofeu Structured version   Visualization version   GIF version

Theorem mofeu 48878
Description: The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
mofeu.1 𝐺 = (𝐴 × 𝐵)
mofeu.2 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
mofeu.3 (𝜑 → ∃*𝑥 𝑥𝐵)
Assertion
Ref Expression
mofeu (𝜑 → (𝐹:𝐴𝐵𝐹 = 𝐺))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mofeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mofeu.2 . . . . 5 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
21imp 406 . . . 4 ((𝜑𝐵 = ∅) → 𝐴 = ∅)
3 f00 6705 . . . . 5 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
43rbaib 538 . . . 4 (𝐴 = ∅ → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅))
52, 4syl 17 . . 3 ((𝜑𝐵 = ∅) → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅))
6 feq3 6631 . . . 4 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐹:𝐴⟶∅))
76adantl 481 . . 3 ((𝜑𝐵 = ∅) → (𝐹:𝐴𝐵𝐹:𝐴⟶∅))
8 mofeu.1 . . . . . 6 𝐺 = (𝐴 × 𝐵)
9 xpeq2 5637 . . . . . . 7 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
10 xp0 6105 . . . . . . 7 (𝐴 × ∅) = ∅
119, 10eqtrdi 2782 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
128, 11eqtrid 2778 . . . . 5 (𝐵 = ∅ → 𝐺 = ∅)
1312adantl 481 . . . 4 ((𝜑𝐵 = ∅) → 𝐺 = ∅)
1413eqeq2d 2742 . . 3 ((𝜑𝐵 = ∅) → (𝐹 = 𝐺𝐹 = ∅))
155, 7, 143bitr4d 311 . 2 ((𝜑𝐵 = ∅) → (𝐹:𝐴𝐵𝐹 = 𝐺))
16 19.42v 1954 . . 3 (∃𝑦(𝜑𝐵 = {𝑦}) ↔ (𝜑 ∧ ∃𝑦 𝐵 = {𝑦}))
17 fconst2g 7137 . . . . . . . 8 (𝑦 ∈ V → (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦})))
1817elv 3441 . . . . . . 7 (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦}))
19 feq3 6631 . . . . . . . 8 (𝐵 = {𝑦} → (𝐹:𝐴𝐵𝐹:𝐴⟶{𝑦}))
20 xpeq2 5637 . . . . . . . . 9 (𝐵 = {𝑦} → (𝐴 × 𝐵) = (𝐴 × {𝑦}))
2120eqeq2d 2742 . . . . . . . 8 (𝐵 = {𝑦} → (𝐹 = (𝐴 × 𝐵) ↔ 𝐹 = (𝐴 × {𝑦})))
2219, 21bibi12d 345 . . . . . . 7 (𝐵 = {𝑦} → ((𝐹:𝐴𝐵𝐹 = (𝐴 × 𝐵)) ↔ (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦}))))
2318, 22mpbiri 258 . . . . . 6 (𝐵 = {𝑦} → (𝐹:𝐴𝐵𝐹 = (𝐴 × 𝐵)))
248eqeq2i 2744 . . . . . 6 (𝐹 = 𝐺𝐹 = (𝐴 × 𝐵))
2523, 24bitr4di 289 . . . . 5 (𝐵 = {𝑦} → (𝐹:𝐴𝐵𝐹 = 𝐺))
2625adantl 481 . . . 4 ((𝜑𝐵 = {𝑦}) → (𝐹:𝐴𝐵𝐹 = 𝐺))
2726exlimiv 1931 . . 3 (∃𝑦(𝜑𝐵 = {𝑦}) → (𝐹:𝐴𝐵𝐹 = 𝐺))
2816, 27sylbir 235 . 2 ((𝜑 ∧ ∃𝑦 𝐵 = {𝑦}) → (𝐹:𝐴𝐵𝐹 = 𝐺))
29 mofeu.3 . . 3 (𝜑 → ∃*𝑥 𝑥𝐵)
30 mo0sn 48846 . . 3 (∃*𝑥 𝑥𝐵 ↔ (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}))
3129, 30sylib 218 . 2 (𝜑 → (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}))
3215, 28, 31mpjaodan 960 1 (𝜑 → (𝐹:𝐴𝐵𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  Vcvv 3436  c0 4283  {csn 4576   × cxp 5614  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  functhinclem1  49475  functhinclem3  49477
  Copyright terms: Public domain W3C validator