| Step | Hyp | Ref
| Expression |
| 1 | | mofeu.2 |
. . . . 5
⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| 2 | 1 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| 3 | | f00 6790 |
. . . . 5
⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| 4 | 3 | rbaib 538 |
. . . 4
⊢ (𝐴 = ∅ → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅)) |
| 5 | 2, 4 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹:𝐴⟶∅ ↔ 𝐹 = ∅)) |
| 6 | | feq3 6718 |
. . . 4
⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) |
| 7 | 6 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) |
| 8 | | mofeu.1 |
. . . . . 6
⊢ 𝐺 = (𝐴 × 𝐵) |
| 9 | | xpeq2 5706 |
. . . . . . 7
⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) |
| 10 | | xp0 6178 |
. . . . . . 7
⊢ (𝐴 × ∅) =
∅ |
| 11 | 9, 10 | eqtrdi 2793 |
. . . . . 6
⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 12 | 8, 11 | eqtrid 2789 |
. . . . 5
⊢ (𝐵 = ∅ → 𝐺 = ∅) |
| 13 | 12 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐺 = ∅) |
| 14 | 13 | eqeq2d 2748 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹 = 𝐺 ↔ 𝐹 = ∅)) |
| 15 | 5, 7, 14 | 3bitr4d 311 |
. 2
⊢ ((𝜑 ∧ 𝐵 = ∅) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
| 16 | | 19.42v 1953 |
. . 3
⊢
(∃𝑦(𝜑 ∧ 𝐵 = {𝑦}) ↔ (𝜑 ∧ ∃𝑦 𝐵 = {𝑦})) |
| 17 | | fconst2g 7223 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦}))) |
| 18 | 17 | elv 3485 |
. . . . . . 7
⊢ (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦})) |
| 19 | | feq3 6718 |
. . . . . . . 8
⊢ (𝐵 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶{𝑦})) |
| 20 | | xpeq2 5706 |
. . . . . . . . 9
⊢ (𝐵 = {𝑦} → (𝐴 × 𝐵) = (𝐴 × {𝑦})) |
| 21 | 20 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝐵 = {𝑦} → (𝐹 = (𝐴 × 𝐵) ↔ 𝐹 = (𝐴 × {𝑦}))) |
| 22 | 19, 21 | bibi12d 345 |
. . . . . . 7
⊢ (𝐵 = {𝑦} → ((𝐹:𝐴⟶𝐵 ↔ 𝐹 = (𝐴 × 𝐵)) ↔ (𝐹:𝐴⟶{𝑦} ↔ 𝐹 = (𝐴 × {𝑦})))) |
| 23 | 18, 22 | mpbiri 258 |
. . . . . 6
⊢ (𝐵 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = (𝐴 × 𝐵))) |
| 24 | 8 | eqeq2i 2750 |
. . . . . 6
⊢ (𝐹 = 𝐺 ↔ 𝐹 = (𝐴 × 𝐵)) |
| 25 | 23, 24 | bitr4di 289 |
. . . . 5
⊢ (𝐵 = {𝑦} → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
| 26 | 25 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = {𝑦}) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
| 27 | 26 | exlimiv 1930 |
. . 3
⊢
(∃𝑦(𝜑 ∧ 𝐵 = {𝑦}) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
| 28 | 16, 27 | sylbir 235 |
. 2
⊢ ((𝜑 ∧ ∃𝑦 𝐵 = {𝑦}) → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |
| 29 | | mofeu.3 |
. . 3
⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) |
| 30 | | mo0sn 48735 |
. . 3
⊢
(∃*𝑥 𝑥 ∈ 𝐵 ↔ (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦})) |
| 31 | 29, 30 | sylib 218 |
. 2
⊢ (𝜑 → (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦})) |
| 32 | 15, 28, 31 | mpjaodan 961 |
1
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) |