| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4318 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | dm0 5905 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | eleq2i 2827 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
| 5 | ndmfv 6916 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∅c0 4313 dom cdm 5659 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-dm 5669 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: fv2prc 6926 csbfv12 6929 0ov 7447 elfvov1 7452 elfvov2 7453 csbov123 7454 csbov 7455 elovmpt3imp 7669 bropopvvv 8094 bropfvvvvlem 8095 itunisuc 10438 ccat1st1st 14651 str0 17213 cntrval 19307 cntzval 19309 cntzrcl 19315 rlmval 21154 chrval 21489 ocvval 21632 elocv 21633 opsrle 22010 opsrbaslem 22012 mpfrcl 22048 evlval 22058 psr1val 22126 vr1val 22132 iscnp2 23182 resvsca 33353 constrext2chnlem 33789 mrsubfval 35535 msubfval 35551 poimirlem28 37677 0cnv 45738 elfvne0 48794 prcof1 49265 |
| Copyright terms: Public domain | W3C validator |