Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4269 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | dm0 5826 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | eleq2i 2831 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
4 | 1, 3 | mtbir 322 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
5 | ndmfv 6798 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 ∅c0 4261 dom cdm 5588 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-dm 5598 df-iota 6388 df-fv 6438 |
This theorem is referenced by: fv2prc 6808 csbfv12 6811 0ov 7305 csbov123 7310 csbov 7311 elovmpt3imp 7517 bropopvvv 7914 bropfvvvvlem 7915 itunisuc 10159 ccat1st1st 14316 str0 16871 ressbasOLD 16929 cntrval 18906 cntzval 18908 cntzrcl 18914 rlmval 20442 chrval 20710 ocvval 20853 elocv 20854 opsrle 21229 opsrbaslem 21231 opsrbaslemOLD 21232 mpfrcl 21276 evlval 21286 psr1val 21338 vr1val 21344 iscnp2 22371 resvsca 31508 mrsubfval 33449 msubfval 33465 poimirlem28 35784 0cnv 43237 elfvne0 46128 |
Copyright terms: Public domain | W3C validator |