| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4285 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | dm0 5859 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | eleq2i 2823 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
| 5 | ndmfv 6854 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ∅c0 4280 dom cdm 5614 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: fv2prc 6864 csbfv12 6867 0ov 7383 elfvov1 7388 elfvov2 7389 csbov123 7390 csbov 7391 elovmpt3imp 7603 bropopvvv 8020 bropfvvvvlem 8021 itunisuc 10310 ccat1st1st 14536 str0 17100 cntrval 19231 cntzval 19233 cntzrcl 19239 rlmval 21125 chrval 21460 ocvval 21604 elocv 21605 opsrle 21982 opsrbaslem 21984 mpfrcl 22020 evlval 22030 psr1val 22098 vr1val 22104 iscnp2 23154 resvsca 33297 constrext2chnlem 33763 mrsubfval 35552 msubfval 35568 poimirlem28 37696 0cnv 45788 elfvne0 48888 prcof1 49428 |
| Copyright terms: Public domain | W3C validator |