Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4230 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | dm0 5761 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | eleq2i 2843 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
4 | 1, 3 | mtbir 326 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
5 | ndmfv 6688 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 ∅c0 4225 dom cdm 5524 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-dm 5534 df-iota 6294 df-fv 6343 |
This theorem is referenced by: fv2prc 6698 csbfv12 6701 0ov 7187 csbov123 7192 csbov 7193 elovmpt3imp 7398 bropopvvv 7790 bropfvvvvlem 7791 itunisuc 9879 ccat1st1st 14031 str0 16593 ressbas 16612 cntrval 18516 cntzval 18518 cntzrcl 18524 rlmval 20031 chrval 20293 ocvval 20432 elocv 20433 opsrle 20807 opsrbaslem 20809 mpfrcl 20848 evlval 20858 psr1val 20910 vr1val 20916 iscnp2 21939 resvsca 31055 mrsubfval 32986 msubfval 33002 poimirlem28 35365 0cnv 42750 |
Copyright terms: Public domain | W3C validator |