Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4270 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | dm0 5842 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | eleq2i 2828 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
5 | ndmfv 6836 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 ∅c0 4262 dom cdm 5600 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-dm 5610 df-iota 6410 df-fv 6466 |
This theorem is referenced by: fv2prc 6846 csbfv12 6849 0ov 7344 csbov123 7349 csbov 7350 elovmpt3imp 7558 bropopvvv 7962 bropfvvvvlem 7963 itunisuc 10225 ccat1st1st 14384 str0 16939 ressbasOLD 16997 cntrval 18974 cntzval 18976 cntzrcl 18982 rlmval 20510 chrval 20778 ocvval 20921 elocv 20922 opsrle 21297 opsrbaslem 21299 opsrbaslemOLD 21300 mpfrcl 21344 evlval 21354 psr1val 21406 vr1val 21412 iscnp2 22439 resvsca 31578 mrsubfval 33519 msubfval 33535 poimirlem28 35853 0cnv 43512 elfvne0 46420 |
Copyright terms: Public domain | W3C validator |