![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4344 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | dm0 5934 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | eleq2i 2831 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
5 | ndmfv 6942 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 ∅c0 4339 dom cdm 5689 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 |
This theorem is referenced by: fv2prc 6952 csbfv12 6955 0ov 7468 elfvov1 7473 elfvov2 7474 csbov123 7475 csbov 7476 elovmpt3imp 7690 bropopvvv 8114 bropfvvvvlem 8115 itunisuc 10457 ccat1st1st 14663 str0 17223 ressbasOLD 17281 cntrval 19350 cntzval 19352 cntzrcl 19358 rlmval 21216 chrval 21556 ocvval 21703 elocv 21704 opsrle 22083 opsrbaslem 22085 opsrbaslemOLD 22086 mpfrcl 22127 evlval 22137 psr1val 22203 vr1val 22209 iscnp2 23263 resvsca 33336 mrsubfval 35493 msubfval 35509 poimirlem28 37635 0cnv 45698 elfvne0 48679 |
Copyright terms: Public domain | W3C validator |