MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0fv Structured version   Visualization version   GIF version

Theorem 0fv 6863
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv (∅‘𝐴) = ∅

Proof of Theorem 0fv
StepHypRef Expression
1 noel 4285 . . 3 ¬ 𝐴 ∈ ∅
2 dm0 5859 . . . 4 dom ∅ = ∅
32eleq2i 2823 . . 3 (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅)
41, 3mtbir 323 . 2 ¬ 𝐴 ∈ dom ∅
5 ndmfv 6854 . 2 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅)
64, 5ax-mp 5 1 (∅‘𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  c0 4280  dom cdm 5614  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-dm 5624  df-iota 6437  df-fv 6489
This theorem is referenced by:  fv2prc  6864  csbfv12  6867  0ov  7383  elfvov1  7388  elfvov2  7389  csbov123  7390  csbov  7391  elovmpt3imp  7603  bropopvvv  8020  bropfvvvvlem  8021  itunisuc  10310  ccat1st1st  14536  str0  17100  cntrval  19231  cntzval  19233  cntzrcl  19239  rlmval  21125  chrval  21460  ocvval  21604  elocv  21605  opsrle  21982  opsrbaslem  21984  mpfrcl  22020  evlval  22030  psr1val  22098  vr1val  22104  iscnp2  23154  resvsca  33297  constrext2chnlem  33763  mrsubfval  35552  msubfval  35568  poimirlem28  37696  0cnv  45788  elfvne0  48888  prcof1  49428
  Copyright terms: Public domain W3C validator