![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | dm0 5945 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | eleq2i 2836 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
5 | ndmfv 6955 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ∅c0 4352 dom cdm 5700 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fv2prc 6965 csbfv12 6968 0ov 7485 elfvov1 7490 elfvov2 7491 csbov123 7492 csbov 7493 elovmpt3imp 7707 bropopvvv 8131 bropfvvvvlem 8132 itunisuc 10488 ccat1st1st 14676 str0 17236 ressbasOLD 17294 cntrval 19359 cntzval 19361 cntzrcl 19367 rlmval 21221 chrval 21561 ocvval 21708 elocv 21709 opsrle 22088 opsrbaslem 22090 opsrbaslemOLD 22091 mpfrcl 22132 evlval 22142 psr1val 22208 vr1val 22214 iscnp2 23268 resvsca 33321 mrsubfval 35476 msubfval 35492 poimirlem28 37608 0cnv 45663 elfvne0 48562 |
Copyright terms: Public domain | W3C validator |