| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4297 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | dm0 5874 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | eleq2i 2820 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
| 5 | ndmfv 6875 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∅c0 4292 dom cdm 5631 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-dm 5641 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: fv2prc 6885 csbfv12 6888 0ov 7406 elfvov1 7411 elfvov2 7412 csbov123 7413 csbov 7414 elovmpt3imp 7626 bropopvvv 8046 bropfvvvvlem 8047 itunisuc 10348 ccat1st1st 14569 str0 17135 cntrval 19227 cntzval 19229 cntzrcl 19235 rlmval 21074 chrval 21409 ocvval 21552 elocv 21553 opsrle 21930 opsrbaslem 21932 mpfrcl 21968 evlval 21978 psr1val 22046 vr1val 22052 iscnp2 23102 resvsca 33277 constrext2chnlem 33713 mrsubfval 35468 msubfval 35484 poimirlem28 37615 0cnv 45713 elfvne0 48810 prcof1 49350 |
| Copyright terms: Public domain | W3C validator |