| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | dm0 5887 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | eleq2i 2821 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
| 5 | ndmfv 6896 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∅c0 4299 dom cdm 5641 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: fv2prc 6906 csbfv12 6909 0ov 7427 elfvov1 7432 elfvov2 7433 csbov123 7434 csbov 7435 elovmpt3imp 7649 bropopvvv 8072 bropfvvvvlem 8073 itunisuc 10379 ccat1st1st 14600 str0 17166 cntrval 19258 cntzval 19260 cntzrcl 19266 rlmval 21105 chrval 21440 ocvval 21583 elocv 21584 opsrle 21961 opsrbaslem 21963 mpfrcl 21999 evlval 22009 psr1val 22077 vr1val 22083 iscnp2 23133 resvsca 33311 constrext2chnlem 33747 mrsubfval 35502 msubfval 35518 poimirlem28 37649 0cnv 45747 elfvne0 48841 prcof1 49381 |
| Copyright terms: Public domain | W3C validator |