![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version |
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
Ref | Expression |
---|---|
0fv | ⊢ (∅‘𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4330 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | dm0 5920 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | eleq2i 2824 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
5 | ndmfv 6926 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 ∅c0 4322 dom cdm 5676 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-dm 5686 df-iota 6495 df-fv 6551 |
This theorem is referenced by: fv2prc 6936 csbfv12 6939 0ov 7449 csbov123 7454 csbov 7455 elovmpt3imp 7667 bropopvvv 8081 bropfvvvvlem 8082 itunisuc 10420 ccat1st1st 14585 str0 17129 ressbasOLD 17187 cntrval 19231 cntzval 19233 cntzrcl 19239 rlmval 21043 chrval 21388 ocvval 21531 elocv 21532 opsrle 21914 opsrbaslem 21916 opsrbaslemOLD 21917 mpfrcl 21960 evlval 21970 psr1val 22030 vr1val 22036 iscnp2 23064 resvsca 32882 mrsubfval 34965 msubfval 34981 poimirlem28 36983 0cnv 44920 elfvne0 47680 |
Copyright terms: Public domain | W3C validator |