| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | dm0 5884 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | eleq2i 2820 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
| 5 | ndmfv 6893 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∅c0 4296 dom cdm 5638 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: fv2prc 6903 csbfv12 6906 0ov 7424 elfvov1 7429 elfvov2 7430 csbov123 7431 csbov 7432 elovmpt3imp 7646 bropopvvv 8069 bropfvvvvlem 8070 itunisuc 10372 ccat1st1st 14593 str0 17159 cntrval 19251 cntzval 19253 cntzrcl 19259 rlmval 21098 chrval 21433 ocvval 21576 elocv 21577 opsrle 21954 opsrbaslem 21956 mpfrcl 21992 evlval 22002 psr1val 22070 vr1val 22076 iscnp2 23126 resvsca 33304 constrext2chnlem 33740 mrsubfval 35495 msubfval 35511 poimirlem28 37642 0cnv 45740 elfvne0 48837 prcof1 49377 |
| Copyright terms: Public domain | W3C validator |