| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4289 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | dm0 5863 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | eleq2i 2820 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
| 5 | ndmfv 6855 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∅c0 4284 dom cdm 5619 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-dm 5629 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: fv2prc 6865 csbfv12 6868 0ov 7386 elfvov1 7391 elfvov2 7392 csbov123 7393 csbov 7394 elovmpt3imp 7606 bropopvvv 8023 bropfvvvvlem 8024 itunisuc 10313 ccat1st1st 14535 str0 17100 cntrval 19198 cntzval 19200 cntzrcl 19206 rlmval 21095 chrval 21430 ocvval 21574 elocv 21575 opsrle 21952 opsrbaslem 21954 mpfrcl 21990 evlval 22000 psr1val 22068 vr1val 22074 iscnp2 23124 resvsca 33270 constrext2chnlem 33717 mrsubfval 35481 msubfval 35497 poimirlem28 37628 0cnv 45723 elfvne0 48833 prcof1 49373 |
| Copyright terms: Public domain | W3C validator |