| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fv | Structured version Visualization version GIF version | ||
| Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| Ref | Expression |
|---|---|
| 0fv | ⊢ (∅‘𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4318 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | dm0 5911 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | 2 | eleq2i 2825 | . . 3 ⊢ (𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ∈ dom ∅ |
| 5 | ndmfv 6921 | . 2 ⊢ (¬ 𝐴 ∈ dom ∅ → (∅‘𝐴) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (∅‘𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 ∅c0 4313 dom cdm 5665 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-dm 5675 df-iota 6494 df-fv 6549 |
| This theorem is referenced by: fv2prc 6931 csbfv12 6934 0ov 7450 elfvov1 7455 elfvov2 7456 csbov123 7457 csbov 7458 elovmpt3imp 7672 bropopvvv 8097 bropfvvvvlem 8098 itunisuc 10441 ccat1st1st 14648 str0 17208 ressbasOLD 17259 cntrval 19306 cntzval 19308 cntzrcl 19314 rlmval 21160 chrval 21496 ocvval 21639 elocv 21640 opsrle 22019 opsrbaslem 22021 mpfrcl 22057 evlval 22067 psr1val 22135 vr1val 22141 iscnp2 23193 resvsca 33296 constrext2chnlem 33730 mrsubfval 35472 msubfval 35488 poimirlem28 37614 0cnv 45714 elfvne0 48716 |
| Copyright terms: Public domain | W3C validator |