Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdomne0 Structured version   Visualization version   GIF version

Theorem fdomne0 48838
Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
fdomne0 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅))

Proof of Theorem fdomne0
StepHypRef Expression
1 f0dom0 6744 . . . 4 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
21necon3bid 2969 . . 3 (𝐹:𝑋𝑌 → (𝑋 ≠ ∅ ↔ 𝐹 ≠ ∅))
32biimpa 476 . 2 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → 𝐹 ≠ ∅)
4 feq3 6668 . . . . . 6 (𝑌 = ∅ → (𝐹:𝑋𝑌𝐹:𝑋⟶∅))
5 f00 6742 . . . . . . 7 (𝐹:𝑋⟶∅ ↔ (𝐹 = ∅ ∧ 𝑋 = ∅))
65simprbi 496 . . . . . 6 (𝐹:𝑋⟶∅ → 𝑋 = ∅)
74, 6biimtrdi 253 . . . . 5 (𝑌 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
8 nne 2929 . . . . 5 𝑋 ≠ ∅ ↔ 𝑋 = ∅)
97, 8imbitrrdi 252 . . . 4 (𝑌 = ∅ → (𝐹:𝑋𝑌 → ¬ 𝑋 ≠ ∅))
10 imnan 399 . . . 4 ((𝐹:𝑋𝑌 → ¬ 𝑋 ≠ ∅) ↔ ¬ (𝐹:𝑋𝑌𝑋 ≠ ∅))
119, 10sylib 218 . . 3 (𝑌 = ∅ → ¬ (𝐹:𝑋𝑌𝑋 ≠ ∅))
1211necon2ai 2954 . 2 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → 𝑌 ≠ ∅)
133, 12jca 511 1 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wne 2925  c0 4296  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  fullthinc  49439
  Copyright terms: Public domain W3C validator