|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdomne0 | Structured version Visualization version GIF version | ||
| Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| fdomne0 | ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f0dom0 6792 | . . . 4 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) | |
| 2 | 1 | necon3bid 2985 | . . 3 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 ≠ ∅ ↔ 𝐹 ≠ ∅)) | 
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → 𝐹 ≠ ∅) | 
| 4 | feq3 6718 | . . . . . 6 ⊢ (𝑌 = ∅ → (𝐹:𝑋⟶𝑌 ↔ 𝐹:𝑋⟶∅)) | |
| 5 | f00 6790 | . . . . . . 7 ⊢ (𝐹:𝑋⟶∅ ↔ (𝐹 = ∅ ∧ 𝑋 = ∅)) | |
| 6 | 5 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝑋⟶∅ → 𝑋 = ∅) | 
| 7 | 4, 6 | biimtrdi 253 | . . . . 5 ⊢ (𝑌 = ∅ → (𝐹:𝑋⟶𝑌 → 𝑋 = ∅)) | 
| 8 | nne 2944 | . . . . 5 ⊢ (¬ 𝑋 ≠ ∅ ↔ 𝑋 = ∅) | |
| 9 | 7, 8 | imbitrrdi 252 | . . . 4 ⊢ (𝑌 = ∅ → (𝐹:𝑋⟶𝑌 → ¬ 𝑋 ≠ ∅)) | 
| 10 | imnan 399 | . . . 4 ⊢ ((𝐹:𝑋⟶𝑌 → ¬ 𝑋 ≠ ∅) ↔ ¬ (𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅)) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝑌 = ∅ → ¬ (𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅)) | 
| 12 | 11 | necon2ai 2970 | . 2 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → 𝑌 ≠ ∅) | 
| 13 | 3, 12 | jca 511 | 1 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2940 ∅c0 4333 ⟶wf 6557 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 | 
| This theorem is referenced by: fullthinc 49099 | 
| Copyright terms: Public domain | W3C validator |