Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdomne0 Structured version   Visualization version   GIF version

Theorem fdomne0 48563
Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
fdomne0 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅))

Proof of Theorem fdomne0
StepHypRef Expression
1 f0dom0 6805 . . . 4 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
21necon3bid 2991 . . 3 (𝐹:𝑋𝑌 → (𝑋 ≠ ∅ ↔ 𝐹 ≠ ∅))
32biimpa 476 . 2 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → 𝐹 ≠ ∅)
4 feq3 6730 . . . . . 6 (𝑌 = ∅ → (𝐹:𝑋𝑌𝐹:𝑋⟶∅))
5 f00 6803 . . . . . . 7 (𝐹:𝑋⟶∅ ↔ (𝐹 = ∅ ∧ 𝑋 = ∅))
65simprbi 496 . . . . . 6 (𝐹:𝑋⟶∅ → 𝑋 = ∅)
74, 6biimtrdi 253 . . . . 5 (𝑌 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
8 nne 2950 . . . . 5 𝑋 ≠ ∅ ↔ 𝑋 = ∅)
97, 8imbitrrdi 252 . . . 4 (𝑌 = ∅ → (𝐹:𝑋𝑌 → ¬ 𝑋 ≠ ∅))
10 imnan 399 . . . 4 ((𝐹:𝑋𝑌 → ¬ 𝑋 ≠ ∅) ↔ ¬ (𝐹:𝑋𝑌𝑋 ≠ ∅))
119, 10sylib 218 . . 3 (𝑌 = ∅ → ¬ (𝐹:𝑋𝑌𝑋 ≠ ∅))
1211necon2ai 2976 . 2 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → 𝑌 ≠ ∅)
133, 12jca 511 1 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wne 2946  c0 4352  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  fullthinc  48713
  Copyright terms: Public domain W3C validator