![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdomne0 | Structured version Visualization version GIF version |
Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
fdomne0 | β’ ((πΉ:πβΆπ β§ π β β ) β (πΉ β β β§ π β β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0dom0 6775 | . . . 4 β’ (πΉ:πβΆπ β (π = β β πΉ = β )) | |
2 | 1 | necon3bid 2984 | . . 3 β’ (πΉ:πβΆπ β (π β β β πΉ β β )) |
3 | 2 | biimpa 476 | . 2 β’ ((πΉ:πβΆπ β§ π β β ) β πΉ β β ) |
4 | feq3 6700 | . . . . . 6 β’ (π = β β (πΉ:πβΆπ β πΉ:πβΆβ )) | |
5 | f00 6773 | . . . . . . 7 β’ (πΉ:πβΆβ β (πΉ = β β§ π = β )) | |
6 | 5 | simprbi 496 | . . . . . 6 β’ (πΉ:πβΆβ β π = β ) |
7 | 4, 6 | syl6bi 253 | . . . . 5 β’ (π = β β (πΉ:πβΆπ β π = β )) |
8 | nne 2943 | . . . . 5 β’ (Β¬ π β β β π = β ) | |
9 | 7, 8 | imbitrrdi 251 | . . . 4 β’ (π = β β (πΉ:πβΆπ β Β¬ π β β )) |
10 | imnan 399 | . . . 4 β’ ((πΉ:πβΆπ β Β¬ π β β ) β Β¬ (πΉ:πβΆπ β§ π β β )) | |
11 | 9, 10 | sylib 217 | . . 3 β’ (π = β β Β¬ (πΉ:πβΆπ β§ π β β )) |
12 | 11 | necon2ai 2969 | . 2 β’ ((πΉ:πβΆπ β§ π β β ) β π β β ) |
13 | 3, 12 | jca 511 | 1 β’ ((πΉ:πβΆπ β§ π β β ) β (πΉ β β β§ π β β )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wne 2939 β c0 4322 βΆwf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: fullthinc 47754 |
Copyright terms: Public domain | W3C validator |