Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdomne0 Structured version   Visualization version   GIF version

Theorem fdomne0 46065
Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
fdomne0 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅))

Proof of Theorem fdomne0
StepHypRef Expression
1 f0dom0 6642 . . . 4 (𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
21necon3bid 2987 . . 3 (𝐹:𝑋𝑌 → (𝑋 ≠ ∅ ↔ 𝐹 ≠ ∅))
32biimpa 476 . 2 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → 𝐹 ≠ ∅)
4 feq3 6567 . . . . . 6 (𝑌 = ∅ → (𝐹:𝑋𝑌𝐹:𝑋⟶∅))
5 f00 6640 . . . . . . 7 (𝐹:𝑋⟶∅ ↔ (𝐹 = ∅ ∧ 𝑋 = ∅))
65simprbi 496 . . . . . 6 (𝐹:𝑋⟶∅ → 𝑋 = ∅)
74, 6syl6bi 252 . . . . 5 (𝑌 = ∅ → (𝐹:𝑋𝑌𝑋 = ∅))
8 nne 2946 . . . . 5 𝑋 ≠ ∅ ↔ 𝑋 = ∅)
97, 8syl6ibr 251 . . . 4 (𝑌 = ∅ → (𝐹:𝑋𝑌 → ¬ 𝑋 ≠ ∅))
10 imnan 399 . . . 4 ((𝐹:𝑋𝑌 → ¬ 𝑋 ≠ ∅) ↔ ¬ (𝐹:𝑋𝑌𝑋 ≠ ∅))
119, 10sylib 217 . . 3 (𝑌 = ∅ → ¬ (𝐹:𝑋𝑌𝑋 ≠ ∅))
1211necon2ai 2972 . 2 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → 𝑌 ≠ ∅)
133, 12jca 511 1 ((𝐹:𝑋𝑌𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wne 2942  c0 4253  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  fullthinc  46215
  Copyright terms: Public domain W3C validator