| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdomne0 | Structured version Visualization version GIF version | ||
| Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| fdomne0 | ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0dom0 6744 | . . . 4 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅)) | |
| 2 | 1 | necon3bid 2969 | . . 3 ⊢ (𝐹:𝑋⟶𝑌 → (𝑋 ≠ ∅ ↔ 𝐹 ≠ ∅)) |
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → 𝐹 ≠ ∅) |
| 4 | feq3 6668 | . . . . . 6 ⊢ (𝑌 = ∅ → (𝐹:𝑋⟶𝑌 ↔ 𝐹:𝑋⟶∅)) | |
| 5 | f00 6742 | . . . . . . 7 ⊢ (𝐹:𝑋⟶∅ ↔ (𝐹 = ∅ ∧ 𝑋 = ∅)) | |
| 6 | 5 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝑋⟶∅ → 𝑋 = ∅) |
| 7 | 4, 6 | biimtrdi 253 | . . . . 5 ⊢ (𝑌 = ∅ → (𝐹:𝑋⟶𝑌 → 𝑋 = ∅)) |
| 8 | nne 2929 | . . . . 5 ⊢ (¬ 𝑋 ≠ ∅ ↔ 𝑋 = ∅) | |
| 9 | 7, 8 | imbitrrdi 252 | . . . 4 ⊢ (𝑌 = ∅ → (𝐹:𝑋⟶𝑌 → ¬ 𝑋 ≠ ∅)) |
| 10 | imnan 399 | . . . 4 ⊢ ((𝐹:𝑋⟶𝑌 → ¬ 𝑋 ≠ ∅) ↔ ¬ (𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅)) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝑌 = ∅ → ¬ (𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅)) |
| 12 | 11 | necon2ai 2954 | . 2 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → 𝑌 ≠ ∅) |
| 13 | 3, 12 | jca 511 | 1 ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 ∅c0 4296 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fullthinc 49439 |
| Copyright terms: Public domain | W3C validator |