MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzcn Structured version   Visualization version   GIF version

Theorem gzcn 16561
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 16560 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
21simp1bi 1143 1 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6418  cc 10800  cz 12249  cre 14736  cim 14737  ℤ[i]cgz 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-gz 16559
This theorem is referenced by:  gznegcl  16564  gzcjcl  16565  gzaddcl  16566  gzmulcl  16567  gzsubcl  16569  gzabssqcl  16570  4sqlem4a  16580  4sqlem4  16581  mul4sqlem  16582  mul4sq  16583  4sqlem12  16585  4sqlem17  16590  gzsubrg  20564  gzrngunitlem  20575  gzrngunit  20576  2sqlem2  26471  mul2sq  26472  2sqlem3  26473  cntotbnd  35881
  Copyright terms: Public domain W3C validator