MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzcn Structured version   Visualization version   GIF version

Theorem gzcn 16879
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 16878 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
21simp1bi 1145 1 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6499  cc 11042  cz 12505  cre 15039  cim 15040  ℤ[i]cgz 16876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-gz 16877
This theorem is referenced by:  gznegcl  16882  gzcjcl  16883  gzaddcl  16884  gzmulcl  16885  gzsubcl  16887  gzabssqcl  16888  4sqlem4a  16898  4sqlem4  16899  mul4sqlem  16900  mul4sq  16901  4sqlem12  16903  4sqlem17  16908  gzsubrg  21363  gzrngunitlem  21374  gzrngunit  21375  2sqlem2  27362  mul2sq  27363  2sqlem3  27364  cntotbnd  37783
  Copyright terms: Public domain W3C validator