Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gzcn | Structured version Visualization version GIF version |
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgz 16632 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
2 | 1 | simp1bi 1144 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6433 ℂcc 10869 ℤcz 12319 ℜcre 14808 ℑcim 14809 ℤ[i]cgz 16630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-gz 16631 |
This theorem is referenced by: gznegcl 16636 gzcjcl 16637 gzaddcl 16638 gzmulcl 16639 gzsubcl 16641 gzabssqcl 16642 4sqlem4a 16652 4sqlem4 16653 mul4sqlem 16654 mul4sq 16655 4sqlem12 16657 4sqlem17 16662 gzsubrg 20652 gzrngunitlem 20663 gzrngunit 20664 2sqlem2 26566 mul2sq 26567 2sqlem3 26568 cntotbnd 35954 |
Copyright terms: Public domain | W3C validator |