| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gzcn | Structured version Visualization version GIF version | ||
| Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgz 16909 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 ℂcc 11073 ℤcz 12536 ℜcre 15070 ℑcim 15071 ℤ[i]cgz 16907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-gz 16908 |
| This theorem is referenced by: gznegcl 16913 gzcjcl 16914 gzaddcl 16915 gzmulcl 16916 gzsubcl 16918 gzabssqcl 16919 4sqlem4a 16929 4sqlem4 16930 mul4sqlem 16931 mul4sq 16932 4sqlem12 16934 4sqlem17 16939 gzsubrg 21345 gzrngunitlem 21356 gzrngunit 21357 2sqlem2 27336 mul2sq 27337 2sqlem3 27338 cntotbnd 37797 |
| Copyright terms: Public domain | W3C validator |