![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gzcn | Structured version Visualization version GIF version |
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgz 16978 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
2 | 1 | simp1bi 1145 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 ℂcc 11182 ℤcz 12639 ℜcre 15146 ℑcim 15147 ℤ[i]cgz 16976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-gz 16977 |
This theorem is referenced by: gznegcl 16982 gzcjcl 16983 gzaddcl 16984 gzmulcl 16985 gzsubcl 16987 gzabssqcl 16988 4sqlem4a 16998 4sqlem4 16999 mul4sqlem 17000 mul4sq 17001 4sqlem12 17003 4sqlem17 17008 gzsubrg 21462 gzrngunitlem 21473 gzrngunit 21474 2sqlem2 27480 mul2sq 27481 2sqlem3 27482 cntotbnd 37756 |
Copyright terms: Public domain | W3C validator |