Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gzcn | Structured version Visualization version GIF version |
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgz 16560 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
2 | 1 | simp1bi 1143 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 ℂcc 10800 ℤcz 12249 ℜcre 14736 ℑcim 14737 ℤ[i]cgz 16558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-gz 16559 |
This theorem is referenced by: gznegcl 16564 gzcjcl 16565 gzaddcl 16566 gzmulcl 16567 gzsubcl 16569 gzabssqcl 16570 4sqlem4a 16580 4sqlem4 16581 mul4sqlem 16582 mul4sq 16583 4sqlem12 16585 4sqlem17 16590 gzsubrg 20564 gzrngunitlem 20575 gzrngunit 20576 2sqlem2 26471 mul2sq 26472 2sqlem3 26473 cntotbnd 35881 |
Copyright terms: Public domain | W3C validator |