![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gzcn | Structured version Visualization version GIF version |
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgz 16965 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
2 | 1 | simp1bi 1144 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 ℂcc 11151 ℤcz 12611 ℜcre 15133 ℑcim 15134 ℤ[i]cgz 16963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-gz 16964 |
This theorem is referenced by: gznegcl 16969 gzcjcl 16970 gzaddcl 16971 gzmulcl 16972 gzsubcl 16974 gzabssqcl 16975 4sqlem4a 16985 4sqlem4 16986 mul4sqlem 16987 mul4sq 16988 4sqlem12 16990 4sqlem17 16995 gzsubrg 21457 gzrngunitlem 21468 gzrngunit 21469 2sqlem2 27477 mul2sq 27478 2sqlem3 27479 cntotbnd 37783 |
Copyright terms: Public domain | W3C validator |