| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gzcn | Structured version Visualization version GIF version | ||
| Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgz 16902 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 ℂcc 11066 ℤcz 12529 ℜcre 15063 ℑcim 15064 ℤ[i]cgz 16900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-gz 16901 |
| This theorem is referenced by: gznegcl 16906 gzcjcl 16907 gzaddcl 16908 gzmulcl 16909 gzsubcl 16911 gzabssqcl 16912 4sqlem4a 16922 4sqlem4 16923 mul4sqlem 16924 mul4sq 16925 4sqlem12 16927 4sqlem17 16932 gzsubrg 21338 gzrngunitlem 21349 gzrngunit 21350 2sqlem2 27329 mul2sq 27330 2sqlem3 27331 cntotbnd 37790 |
| Copyright terms: Public domain | W3C validator |