MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzcn Structured version   Visualization version   GIF version

Theorem gzcn 16872
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 16871 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
21simp1bi 1144 1 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cfv 6543  cc 11114  cz 12565  cre 15051  cim 15052  ℤ[i]cgz 16869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-gz 16870
This theorem is referenced by:  gznegcl  16875  gzcjcl  16876  gzaddcl  16877  gzmulcl  16878  gzsubcl  16880  gzabssqcl  16881  4sqlem4a  16891  4sqlem4  16892  mul4sqlem  16893  mul4sq  16894  4sqlem12  16896  4sqlem17  16901  gzsubrg  21288  gzrngunitlem  21299  gzrngunit  21300  2sqlem2  27264  mul2sq  27265  2sqlem3  27266  cntotbnd  37128
  Copyright terms: Public domain W3C validator