| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gzcn | Structured version Visualization version GIF version | ||
| Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzcn | ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgz 16878 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 ℂcc 11042 ℤcz 12505 ℜcre 15039 ℑcim 15040 ℤ[i]cgz 16876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-gz 16877 |
| This theorem is referenced by: gznegcl 16882 gzcjcl 16883 gzaddcl 16884 gzmulcl 16885 gzsubcl 16887 gzabssqcl 16888 4sqlem4a 16898 4sqlem4 16899 mul4sqlem 16900 mul4sq 16901 4sqlem12 16903 4sqlem17 16908 gzsubrg 21363 gzrngunitlem 21374 gzrngunit 21375 2sqlem2 27362 mul2sq 27363 2sqlem3 27364 cntotbnd 37783 |
| Copyright terms: Public domain | W3C validator |