Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4sqlem4a | Structured version Visualization version GIF version |
Description: Lemma for 4sqlem4 16343. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
4sq.1 | ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
Ref | Expression |
---|---|
4sqlem4a | ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn 16323 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
2 | 1 | absvalsq2d 14851 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) |
3 | gzcn 16323 | . . . 4 ⊢ (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ) | |
4 | 3 | absvalsq2d 14851 | . . 3 ⊢ (𝐵 ∈ ℤ[i] → ((abs‘𝐵)↑2) = (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) |
5 | 2, 4 | oveqan12d 7169 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) = ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) + (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))) |
6 | elgz 16322 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
7 | 6 | simp2bi 1143 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
8 | 6 | simp3bi 1144 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
9 | 7, 8 | jca 515 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) |
10 | elgz 16322 | . . . . 5 ⊢ (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) | |
11 | 10 | simp2bi 1143 | . . . 4 ⊢ (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ) |
12 | 10 | simp3bi 1144 | . . . 4 ⊢ (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ) |
13 | 11, 12 | jca 515 | . . 3 ⊢ (𝐵 ∈ ℤ[i] → ((ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) |
14 | 4sq.1 | . . . 4 ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} | |
15 | 14 | 4sqlem3 16341 | . . 3 ⊢ ((((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ) ∧ ((ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) + (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ∈ 𝑆) |
16 | 9, 13, 15 | syl2an 598 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) + (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ∈ 𝑆) |
17 | 5, 16 | eqeltrd 2852 | 1 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 + caddc 10578 2c2 11729 ℤcz 12020 ↑cexp 13479 ℜcre 14504 ℑcim 14505 abscabs 14641 ℤ[i]cgz 16320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-gz 16321 |
This theorem is referenced by: 4sqlem4 16343 mul4sqlem 16344 4sqlem13 16348 4sqlem19 16354 |
Copyright terms: Public domain | W3C validator |