Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gzabssqcl | Structured version Visualization version GIF version |
Description: The squared norm of a gaussian integer is an integer. (Contributed by Mario Carneiro, 16-Jul-2014.) |
Ref | Expression |
---|---|
gzabssqcl | ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn 16498 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
2 | 1 | absvalsq2d 15020 | . 2 ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) |
3 | elgz 16497 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
4 | 3 | simp2bi 1148 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
5 | zsqcl2 13721 | . . . 4 ⊢ ((ℜ‘𝐴) ∈ ℤ → ((ℜ‘𝐴)↑2) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → ((ℜ‘𝐴)↑2) ∈ ℕ0) |
7 | 3 | simp3bi 1149 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
8 | zsqcl2 13721 | . . . 4 ⊢ ((ℑ‘𝐴) ∈ ℤ → ((ℑ‘𝐴)↑2) ∈ ℕ0) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → ((ℑ‘𝐴)↑2) ∈ ℕ0) |
10 | 6, 9 | nn0addcld 12167 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℕ0) |
11 | 2, 10 | eqeltrd 2839 | 1 ⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6389 (class class class)co 7222 ℂcc 10740 + caddc 10745 2c2 11898 ℕ0cn0 12103 ℤcz 12189 ↑cexp 13648 ℜcre 14673 ℑcim 14674 abscabs 14810 ℤ[i]cgz 16495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-pre-sup 10820 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-sup 9071 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-nn 11844 df-2 11906 df-3 11907 df-n0 12104 df-z 12190 df-uz 12452 df-rp 12600 df-seq 13588 df-exp 13649 df-cj 14675 df-re 14676 df-im 14677 df-sqrt 14811 df-abs 14812 df-gz 16496 |
This theorem is referenced by: mul4sq 16520 gzrngunitlem 20441 |
Copyright terms: Public domain | W3C validator |