MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem3 Structured version   Visualization version   GIF version

Theorem 2sqlem3 27482
Description: Lemma for 2sqlem5 27484. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem4.3 (𝜑𝐴 ∈ ℤ)
2sqlem4.4 (𝜑𝐵 ∈ ℤ)
2sqlem4.5 (𝜑𝐶 ∈ ℤ)
2sqlem4.6 (𝜑𝐷 ∈ ℤ)
2sqlem4.7 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
2sqlem4.8 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
2sqlem4.9 (𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
Assertion
Ref Expression
2sqlem3 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqlem4.3 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
2 2sqlem4.4 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
3 gzreim 16986 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + (i · 𝐵)) ∈ ℤ[i])
41, 2, 3syl2anc 583 . . . . . . 7 (𝜑 → (𝐴 + (i · 𝐵)) ∈ ℤ[i])
5 2sqlem4.5 . . . . . . . 8 (𝜑𝐶 ∈ ℤ)
6 2sqlem4.6 . . . . . . . 8 (𝜑𝐷 ∈ ℤ)
7 gzreim 16986 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 + (i · 𝐷)) ∈ ℤ[i])
85, 6, 7syl2anc 583 . . . . . . 7 (𝜑 → (𝐶 + (i · 𝐷)) ∈ ℤ[i])
9 gzmulcl 16985 . . . . . . 7 (((𝐴 + (i · 𝐵)) ∈ ℤ[i] ∧ (𝐶 + (i · 𝐷)) ∈ ℤ[i]) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i])
104, 8, 9syl2anc 583 . . . . . 6 (𝜑 → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i])
11 gzcn 16979 . . . . . 6 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
1210, 11syl 17 . . . . 5 (𝜑 → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
13 2sqlem5.2 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
14 prmnn 16721 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1513, 14syl 17 . . . . . 6 (𝜑𝑃 ∈ ℕ)
1615nncnd 12309 . . . . 5 (𝜑𝑃 ∈ ℂ)
1715nnne0d 12343 . . . . 5 (𝜑𝑃 ≠ 0)
1812, 16, 17divcld 12070 . . . 4 (𝜑 → (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℂ)
1915nnred 12308 . . . . . 6 (𝜑𝑃 ∈ ℝ)
2019, 12, 17redivd 15278 . . . . 5 (𝜑 → (ℜ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
21 prmz 16722 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2213, 21syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
23 zsqcl 14179 . . . . . . . . . . . 12 (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃↑2) ∈ ℤ)
25 2sqlem5.1 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
2625nnzd 12666 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
2726, 24zmulcld 12753 . . . . . . . . . . 11 (𝜑 → (𝑁 · (𝑃↑2)) ∈ ℤ)
28 dvdsmul2 16327 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝑃))
2922, 22, 28syl2anc 583 . . . . . . . . . . . 12 (𝜑𝑃 ∥ (𝑃 · 𝑃))
3016sqvald 14193 . . . . . . . . . . . 12 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
3129, 30breqtrrd 5194 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃↑2))
32 dvdsmul2 16327 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑃↑2) ∈ ℤ) → (𝑃↑2) ∥ (𝑁 · (𝑃↑2)))
3326, 24, 32syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑃↑2) ∥ (𝑁 · (𝑃↑2)))
3422, 24, 27, 31, 33dvdstrd 16343 . . . . . . . . . 10 (𝜑𝑃 ∥ (𝑁 · (𝑃↑2)))
35 gzcn 16979 . . . . . . . . . . . . . . . 16 ((𝐴 + (i · 𝐵)) ∈ ℤ[i] → (𝐴 + (i · 𝐵)) ∈ ℂ)
364, 35syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + (i · 𝐵)) ∈ ℂ)
3736abscld 15485 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3837recnd 11318 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴 + (i · 𝐵))) ∈ ℂ)
39 gzcn 16979 . . . . . . . . . . . . . . . 16 ((𝐶 + (i · 𝐷)) ∈ ℤ[i] → (𝐶 + (i · 𝐷)) ∈ ℂ)
408, 39syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 + (i · 𝐷)) ∈ ℂ)
4140abscld 15485 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐶 + (i · 𝐷))) ∈ ℝ)
4241recnd 11318 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐶 + (i · 𝐷))) ∈ ℂ)
4338, 42sqmuld 14208 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)))
441zred 12747 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
452zred 12747 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
4644, 45crred 15280 . . . . . . . . . . . . . . . 16 (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
4746oveq1d 7463 . . . . . . . . . . . . . . 15 (𝜑 → ((ℜ‘(𝐴 + (i · 𝐵)))↑2) = (𝐴↑2))
4844, 45crimd 15281 . . . . . . . . . . . . . . . 16 (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
4948oveq1d 7463 . . . . . . . . . . . . . . 15 (𝜑 → ((ℑ‘(𝐴 + (i · 𝐵)))↑2) = (𝐵↑2))
5047, 49oveq12d 7466 . . . . . . . . . . . . . 14 (𝜑 → (((ℜ‘(𝐴 + (i · 𝐵)))↑2) + ((ℑ‘(𝐴 + (i · 𝐵)))↑2)) = ((𝐴↑2) + (𝐵↑2)))
5136absvalsq2d 15492 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(𝐴 + (i · 𝐵)))↑2) = (((ℜ‘(𝐴 + (i · 𝐵)))↑2) + ((ℑ‘(𝐴 + (i · 𝐵)))↑2)))
52 2sqlem4.7 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
5350, 51, 523eqtr4d 2790 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐴 + (i · 𝐵)))↑2) = (𝑁 · 𝑃))
545zred 12747 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ℝ)
556zred 12747 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ ℝ)
5654, 55crred 15280 . . . . . . . . . . . . . . . 16 (𝜑 → (ℜ‘(𝐶 + (i · 𝐷))) = 𝐶)
5756oveq1d 7463 . . . . . . . . . . . . . . 15 (𝜑 → ((ℜ‘(𝐶 + (i · 𝐷)))↑2) = (𝐶↑2))
5854, 55crimd 15281 . . . . . . . . . . . . . . . 16 (𝜑 → (ℑ‘(𝐶 + (i · 𝐷))) = 𝐷)
5958oveq1d 7463 . . . . . . . . . . . . . . 15 (𝜑 → ((ℑ‘(𝐶 + (i · 𝐷)))↑2) = (𝐷↑2))
6057, 59oveq12d 7466 . . . . . . . . . . . . . 14 (𝜑 → (((ℜ‘(𝐶 + (i · 𝐷)))↑2) + ((ℑ‘(𝐶 + (i · 𝐷)))↑2)) = ((𝐶↑2) + (𝐷↑2)))
6140absvalsq2d 15492 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(𝐶 + (i · 𝐷)))↑2) = (((ℜ‘(𝐶 + (i · 𝐷)))↑2) + ((ℑ‘(𝐶 + (i · 𝐷)))↑2)))
62 2sqlem4.8 . . . . . . . . . . . . . 14 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
6360, 61, 623eqtr4d 2790 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐶 + (i · 𝐷)))↑2) = 𝑃)
6453, 63oveq12d 7466 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)) = ((𝑁 · 𝑃) · 𝑃))
6525nncnd 12309 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
6665, 16, 16mulassd 11313 . . . . . . . . . . . 12 (𝜑 → ((𝑁 · 𝑃) · 𝑃) = (𝑁 · (𝑃 · 𝑃)))
6743, 64, 663eqtrd 2784 . . . . . . . . . . 11 (𝜑 → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (𝑁 · (𝑃 · 𝑃)))
6836, 40absmuld 15503 . . . . . . . . . . . 12 (𝜑 → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷)))))
6968oveq1d 7463 . . . . . . . . . . 11 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2))
7030oveq2d 7464 . . . . . . . . . . 11 (𝜑 → (𝑁 · (𝑃↑2)) = (𝑁 · (𝑃 · 𝑃)))
7167, 69, 703eqtr4d 2790 . . . . . . . . . 10 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (𝑁 · (𝑃↑2)))
7234, 71breqtrrd 5194 . . . . . . . . 9 (𝜑𝑃 ∥ ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))
7312absvalsq2d 15492 . . . . . . . . . 10 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
74 elgz 16978 . . . . . . . . . . . . . . 15 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] ↔ (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ ∧ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ ∧ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ))
7574simp2bi 1146 . . . . . . . . . . . . . 14 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
7610, 75syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
77 zsqcl 14179 . . . . . . . . . . . . 13 ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
7876, 77syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
7978zcnd 12748 . . . . . . . . . . 11 (𝜑 → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℂ)
8074simp3bi 1147 . . . . . . . . . . . . . 14 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
8110, 80syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
82 zsqcl 14179 . . . . . . . . . . . . 13 ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
8381, 82syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
8483zcnd 12748 . . . . . . . . . . 11 (𝜑 → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℂ)
8579, 84addcomd 11492 . . . . . . . . . 10 (𝜑 → (((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)) = (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
8673, 85eqtrd 2780 . . . . . . . . 9 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
8772, 86breqtrd 5192 . . . . . . . 8 (𝜑𝑃 ∥ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
88 2sqlem4.9 . . . . . . . . . . . 12 (𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
895zcnd 12748 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
902zcnd 12748 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℂ)
9189, 90mulcld 11310 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
921zcnd 12748 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
936zcnd 12748 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℂ)
9492, 93mulcld 11310 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐷) ∈ ℂ)
9591, 94addcomd 11492 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) = ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
9689, 90mulcomd 11311 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶))
9796oveq2d 7464 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
9895, 97eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
9988, 98breqtrd 5192 . . . . . . . . . . 11 (𝜑𝑃 ∥ ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
10036, 40immuld 15268 . . . . . . . . . . . 12 (𝜑 → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))))
10146, 58oveq12d 7466 . . . . . . . . . . . . 13 (𝜑 → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐷))
10248, 56oveq12d 7466 . . . . . . . . . . . . 13 (𝜑 → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐶))
103101, 102oveq12d 7466 . . . . . . . . . . . 12 (𝜑 → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
104100, 103eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
10599, 104breqtrrd 5194 . . . . . . . . . 10 (𝜑𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))
106 2nn 12366 . . . . . . . . . . . 12 2 ∈ ℕ
107106a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ)
108 prmdvdsexp 16762 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
10913, 81, 107, 108syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
110105, 109mpbird 257 . . . . . . . . 9 (𝜑𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))
111 dvdsadd2b 16354 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ ∧ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ ∧ 𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))) → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))))
11222, 78, 83, 110, 111syl112anc 1374 . . . . . . . 8 (𝜑 → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))))
11387, 112mpbird 257 . . . . . . 7 (𝜑𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))
114 prmdvdsexp 16762 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
11513, 76, 107, 114syl3anc 1371 . . . . . . 7 (𝜑 → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
116113, 115mpbid 232 . . . . . 6 (𝜑𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))
117 dvdsval2 16305 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ) → (𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
11822, 17, 76, 117syl3anc 1371 . . . . . 6 (𝜑 → (𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
119116, 118mpbid 232 . . . . 5 (𝜑 → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ)
12020, 119eqeltrd 2844 . . . 4 (𝜑 → (ℜ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ)
12119, 12, 17imdivd 15279 . . . . 5 (𝜑 → (ℑ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
122 dvdsval2 16305 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ) → (𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
12322, 17, 81, 122syl3anc 1371 . . . . . 6 (𝜑 → (𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
124105, 123mpbid 232 . . . . 5 (𝜑 → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ)
125121, 124eqeltrd 2844 . . . 4 (𝜑 → (ℑ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ)
126 elgz 16978 . . . 4 ((((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℤ[i] ↔ ((((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℂ ∧ (ℜ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ ∧ (ℑ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ))
12718, 120, 125, 126syl3anbrc 1343 . . 3 (𝜑 → (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℤ[i])
12812, 16, 17absdivd 15504 . . . . . 6 (𝜑 → (abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / (abs‘𝑃)))
12915nnnn0d 12613 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
130129nn0ge0d 12616 . . . . . . . 8 (𝜑 → 0 ≤ 𝑃)
13119, 130absidd 15471 . . . . . . 7 (𝜑 → (abs‘𝑃) = 𝑃)
132131oveq2d 7464 . . . . . 6 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / (abs‘𝑃)) = ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
133128, 132eqtrd 2780 . . . . 5 (𝜑 → (abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
134133oveq1d 7463 . . . 4 (𝜑 → ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2) = (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃)↑2))
13512abscld 15485 . . . . . 6 (𝜑 → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℝ)
136135recnd 11318 . . . . 5 (𝜑 → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℂ)
137136, 16, 17sqdivd 14209 . . . 4 (𝜑 → (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃)↑2) = (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) / (𝑃↑2)))
13871oveq1d 7463 . . . . 5 (𝜑 → (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) / (𝑃↑2)) = ((𝑁 · (𝑃↑2)) / (𝑃↑2)))
13915nnsqcld 14293 . . . . . . 7 (𝜑 → (𝑃↑2) ∈ ℕ)
140139nncnd 12309 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℂ)
141139nnne0d 12343 . . . . . 6 (𝜑 → (𝑃↑2) ≠ 0)
14265, 140, 141divcan4d 12076 . . . . 5 (𝜑 → ((𝑁 · (𝑃↑2)) / (𝑃↑2)) = 𝑁)
143138, 142eqtrd 2780 . . . 4 (𝜑 → (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) / (𝑃↑2)) = 𝑁)
144134, 137, 1433eqtrrd 2785 . . 3 (𝜑𝑁 = ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2))
145 fveq2 6920 . . . . 5 (𝑥 = (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) → (abs‘𝑥) = (abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)))
146145oveq1d 7463 . . . 4 (𝑥 = (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) → ((abs‘𝑥)↑2) = ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2))
147146rspceeqv 3658 . . 3 (((((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℤ[i] ∧ 𝑁 = ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2)) → ∃𝑥 ∈ ℤ[i] 𝑁 = ((abs‘𝑥)↑2))
148127, 144, 147syl2anc 583 . 2 (𝜑 → ∃𝑥 ∈ ℤ[i] 𝑁 = ((abs‘𝑥)↑2))
149 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
1501492sqlem1 27479 . 2 (𝑁𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝑁 = ((abs‘𝑥)↑2))
151148, 150sylibr 234 1 (𝜑𝑁𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  ici 11186   + caddc 11187   · cmul 11189   / cdiv 11947  cn 12293  2c2 12348  cz 12639  cexp 14112  cre 15146  cim 15147  abscabs 15283  cdvds 16302  cprime 16718  ℤ[i]cgz 16976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-gz 16977
This theorem is referenced by:  2sqlem4  27483
  Copyright terms: Public domain W3C validator