![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gzaddcl | Structured version Visualization version GIF version |
Description: The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzaddcl | ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i]) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn 16904 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
2 | gzcn 16904 | . . 3 ⊢ (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ) | |
3 | addcl 11222 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℂ) |
5 | readd 15109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | |
6 | 1, 2, 5 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) |
7 | elgz 16903 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
8 | 7 | simp2bi 1143 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
9 | elgz 16903 | . . . . 5 ⊢ (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) | |
10 | 9 | simp2bi 1143 | . . . 4 ⊢ (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ) |
11 | zaddcl 12635 | . . . 4 ⊢ (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ) | |
12 | 8, 10, 11 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ) |
13 | 6, 12 | eqeltrd 2825 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) ∈ ℤ) |
14 | imadd 15117 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | |
15 | 1, 2, 14 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) |
16 | 7 | simp3bi 1144 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
17 | 9 | simp3bi 1144 | . . . 4 ⊢ (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ) |
18 | zaddcl 12635 | . . . 4 ⊢ (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ) | |
19 | 16, 17, 18 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ) |
20 | 15, 19 | eqeltrd 2825 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) ∈ ℤ) |
21 | elgz 16903 | . 2 ⊢ ((𝐴 + 𝐵) ∈ ℤ[i] ↔ ((𝐴 + 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 + 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 + 𝐵)) ∈ ℤ)) | |
22 | 4, 13, 20, 21 | syl3anbrc 1340 | 1 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i]) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 + caddc 11143 ℤcz 12591 ℜcre 15080 ℑcim 15081 ℤ[i]cgz 16901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-cj 15082 df-re 15083 df-im 15084 df-gz 16902 |
This theorem is referenced by: gzreim 16911 gzsubcl 16912 mul4sqlem 16925 gzsubrg 21371 |
Copyright terms: Public domain | W3C validator |