MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Structured version   Visualization version   GIF version

Theorem 2sqlem2 25556
Description: Lemma for 2sq 25568. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem2 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝐴,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
212sqlem1 25555 . . 3 (𝐴𝑆 ↔ ∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2))
3 elgz 16006 . . . . . . 7 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
43simp2bi 1180 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
53simp3bi 1181 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
6 gzcn 16007 . . . . . . 7 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
76absvalsq2d 14559 . . . . . 6 (𝑧 ∈ ℤ[i] → ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
8 oveq1 6912 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥↑2) = ((ℜ‘𝑧)↑2))
98oveq1d 6920 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → ((𝑥↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + (𝑦↑2)))
109eqeq2d 2835 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2))))
11 oveq1 6912 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → (𝑦↑2) = ((ℑ‘𝑧)↑2))
1211oveq2d 6921 . . . . . . . 8 (𝑦 = (ℑ‘𝑧) → (((ℜ‘𝑧)↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
1312eqeq2d 2835 . . . . . . 7 (𝑦 = (ℑ‘𝑧) → (((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))))
1410, 13rspc2ev 3541 . . . . . 6 (((ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ ∧ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
154, 5, 7, 14syl3anc 1494 . . . . 5 (𝑧 ∈ ℤ[i] → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
16 eqeq1 2829 . . . . . 6 (𝐴 = ((abs‘𝑧)↑2) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
17162rexbidv 3267 . . . . 5 (𝐴 = ((abs‘𝑧)↑2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
1815, 17syl5ibrcom 239 . . . 4 (𝑧 ∈ ℤ[i] → (𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
1918rexlimiv 3236 . . 3 (∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
202, 19sylbi 209 . 2 (𝐴𝑆 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
21 gzreim 16014 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℤ[i])
22 zcn 11709 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 ax-icn 10311 . . . . . . . . . 10 i ∈ ℂ
24 zcn 11709 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
25 mulcl 10336 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
2623, 24, 25sylancr 581 . . . . . . . . 9 (𝑦 ∈ ℤ → (i · 𝑦) ∈ ℂ)
27 addcl 10334 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2822, 26, 27syl2an 589 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2928absvalsq2d 14559 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘(𝑥 + (i · 𝑦)))↑2) = (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)))
30 zre 11708 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
31 zre 11708 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
32 crre 14231 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3330, 31, 32syl2an 589 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3433oveq1d 6920 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℜ‘(𝑥 + (i · 𝑦)))↑2) = (𝑥↑2))
35 crim 14232 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3630, 31, 35syl2an 589 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3736oveq1d 6920 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℑ‘(𝑥 + (i · 𝑦)))↑2) = (𝑦↑2))
3834, 37oveq12d 6923 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)) = ((𝑥↑2) + (𝑦↑2)))
3929, 38eqtr2d 2862 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
40 fveq2 6433 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → (abs‘𝑧) = (abs‘(𝑥 + (i · 𝑦))))
4140oveq1d 6920 . . . . . . 7 (𝑧 = (𝑥 + (i · 𝑦)) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
4241rspceeqv 3544 . . . . . 6 (((𝑥 + (i · 𝑦)) ∈ ℤ[i] ∧ ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2)) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4321, 39, 42syl2anc 579 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4412sqlem1 25555 . . . . 5 (((𝑥↑2) + (𝑦↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4543, 44sylibr 226 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆)
46 eleq1 2894 . . . 4 (𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝐴𝑆 ↔ ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆))
4745, 46syl5ibrcom 239 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆))
4847rexlimivv 3246 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆)
4920, 48impbii 201 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1656  wcel 2164  wrex 3118  cmpt 4952  ran crn 5343  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  ici 10254   + caddc 10255   · cmul 10257  2c2 11406  cz 11704  cexp 13154  cre 14214  cim 14215  abscabs 14351  ℤ[i]cgz 16004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-gz 16005
This theorem is referenced by:  2sqlem5  25560  2sqlem7  25562  2sq  25568
  Copyright terms: Public domain W3C validator