MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Structured version   Visualization version   GIF version

Theorem 2sqlem2 26566
Description: Lemma for 2sq 26578. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem2 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝐴,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
212sqlem1 26565 . . 3 (𝐴𝑆 ↔ ∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2))
3 elgz 16632 . . . . . . 7 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
43simp2bi 1145 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
53simp3bi 1146 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
6 gzcn 16633 . . . . . . 7 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
76absvalsq2d 15155 . . . . . 6 (𝑧 ∈ ℤ[i] → ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
8 oveq1 7282 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥↑2) = ((ℜ‘𝑧)↑2))
98oveq1d 7290 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → ((𝑥↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + (𝑦↑2)))
109eqeq2d 2749 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2))))
11 oveq1 7282 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → (𝑦↑2) = ((ℑ‘𝑧)↑2))
1211oveq2d 7291 . . . . . . . 8 (𝑦 = (ℑ‘𝑧) → (((ℜ‘𝑧)↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
1312eqeq2d 2749 . . . . . . 7 (𝑦 = (ℑ‘𝑧) → (((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))))
1410, 13rspc2ev 3572 . . . . . 6 (((ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ ∧ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
154, 5, 7, 14syl3anc 1370 . . . . 5 (𝑧 ∈ ℤ[i] → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
16 eqeq1 2742 . . . . . 6 (𝐴 = ((abs‘𝑧)↑2) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
17162rexbidv 3229 . . . . 5 (𝐴 = ((abs‘𝑧)↑2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
1815, 17syl5ibrcom 246 . . . 4 (𝑧 ∈ ℤ[i] → (𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
1918rexlimiv 3209 . . 3 (∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
202, 19sylbi 216 . 2 (𝐴𝑆 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
21 gzreim 16640 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℤ[i])
22 zcn 12324 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 ax-icn 10930 . . . . . . . . . 10 i ∈ ℂ
24 zcn 12324 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
25 mulcl 10955 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
2623, 24, 25sylancr 587 . . . . . . . . 9 (𝑦 ∈ ℤ → (i · 𝑦) ∈ ℂ)
27 addcl 10953 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2822, 26, 27syl2an 596 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2928absvalsq2d 15155 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘(𝑥 + (i · 𝑦)))↑2) = (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)))
30 zre 12323 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
31 zre 12323 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
32 crre 14825 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3330, 31, 32syl2an 596 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3433oveq1d 7290 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℜ‘(𝑥 + (i · 𝑦)))↑2) = (𝑥↑2))
35 crim 14826 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3630, 31, 35syl2an 596 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3736oveq1d 7290 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℑ‘(𝑥 + (i · 𝑦)))↑2) = (𝑦↑2))
3834, 37oveq12d 7293 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)) = ((𝑥↑2) + (𝑦↑2)))
3929, 38eqtr2d 2779 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
40 fveq2 6774 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → (abs‘𝑧) = (abs‘(𝑥 + (i · 𝑦))))
4140oveq1d 7290 . . . . . . 7 (𝑧 = (𝑥 + (i · 𝑦)) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
4241rspceeqv 3575 . . . . . 6 (((𝑥 + (i · 𝑦)) ∈ ℤ[i] ∧ ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2)) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4321, 39, 42syl2anc 584 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4412sqlem1 26565 . . . . 5 (((𝑥↑2) + (𝑦↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4543, 44sylibr 233 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆)
46 eleq1 2826 . . . 4 (𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝐴𝑆 ↔ ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆))
4745, 46syl5ibrcom 246 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆))
4847rexlimivv 3221 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆)
4920, 48impbii 208 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  ici 10873   + caddc 10874   · cmul 10876  2c2 12028  cz 12319  cexp 13782  cre 14808  cim 14809  abscabs 14945  ℤ[i]cgz 16630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-gz 16631
This theorem is referenced by:  2sqlem5  26570  2sqlem7  26572  2sq  26578
  Copyright terms: Public domain W3C validator