MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Structured version   Visualization version   GIF version

Theorem 2sqlem2 27270
Description: Lemma for 2sq 27282. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem2 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝐴,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
212sqlem1 27269 . . 3 (𝐴𝑆 ↔ ∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2))
3 elgz 16865 . . . . . . 7 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
43simp2bi 1143 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
53simp3bi 1144 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
6 gzcn 16866 . . . . . . 7 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
76absvalsq2d 15388 . . . . . 6 (𝑧 ∈ ℤ[i] → ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
8 oveq1 7409 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥↑2) = ((ℜ‘𝑧)↑2))
98oveq1d 7417 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → ((𝑥↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + (𝑦↑2)))
109eqeq2d 2735 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2))))
11 oveq1 7409 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → (𝑦↑2) = ((ℑ‘𝑧)↑2))
1211oveq2d 7418 . . . . . . . 8 (𝑦 = (ℑ‘𝑧) → (((ℜ‘𝑧)↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
1312eqeq2d 2735 . . . . . . 7 (𝑦 = (ℑ‘𝑧) → (((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))))
1410, 13rspc2ev 3617 . . . . . 6 (((ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ ∧ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
154, 5, 7, 14syl3anc 1368 . . . . 5 (𝑧 ∈ ℤ[i] → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
16 eqeq1 2728 . . . . . 6 (𝐴 = ((abs‘𝑧)↑2) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
17162rexbidv 3211 . . . . 5 (𝐴 = ((abs‘𝑧)↑2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
1815, 17syl5ibrcom 246 . . . 4 (𝑧 ∈ ℤ[i] → (𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
1918rexlimiv 3140 . . 3 (∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
202, 19sylbi 216 . 2 (𝐴𝑆 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
21 gzreim 16873 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℤ[i])
22 zcn 12561 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 ax-icn 11166 . . . . . . . . . 10 i ∈ ℂ
24 zcn 12561 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
25 mulcl 11191 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
2623, 24, 25sylancr 586 . . . . . . . . 9 (𝑦 ∈ ℤ → (i · 𝑦) ∈ ℂ)
27 addcl 11189 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2822, 26, 27syl2an 595 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2928absvalsq2d 15388 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘(𝑥 + (i · 𝑦)))↑2) = (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)))
30 zre 12560 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
31 zre 12560 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
32 crre 15059 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3330, 31, 32syl2an 595 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3433oveq1d 7417 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℜ‘(𝑥 + (i · 𝑦)))↑2) = (𝑥↑2))
35 crim 15060 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3630, 31, 35syl2an 595 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3736oveq1d 7417 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℑ‘(𝑥 + (i · 𝑦)))↑2) = (𝑦↑2))
3834, 37oveq12d 7420 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)) = ((𝑥↑2) + (𝑦↑2)))
3929, 38eqtr2d 2765 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
40 fveq2 6882 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → (abs‘𝑧) = (abs‘(𝑥 + (i · 𝑦))))
4140oveq1d 7417 . . . . . . 7 (𝑧 = (𝑥 + (i · 𝑦)) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
4241rspceeqv 3626 . . . . . 6 (((𝑥 + (i · 𝑦)) ∈ ℤ[i] ∧ ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2)) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4321, 39, 42syl2anc 583 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4412sqlem1 27269 . . . . 5 (((𝑥↑2) + (𝑦↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4543, 44sylibr 233 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆)
46 eleq1 2813 . . . 4 (𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝐴𝑆 ↔ ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆))
4745, 46syl5ibrcom 246 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆))
4847rexlimivv 3191 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆)
4920, 48impbii 208 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  wrex 3062  cmpt 5222  ran crn 5668  cfv 6534  (class class class)co 7402  cc 11105  cr 11106  ici 11109   + caddc 11110   · cmul 11112  2c2 12265  cz 12556  cexp 14025  cre 15042  cim 15043  abscabs 15179  ℤ[i]cgz 16863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-gz 16864
This theorem is referenced by:  2sqlem5  27274  2sqlem7  27276  2sq  27282
  Copyright terms: Public domain W3C validator