MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Structured version   Visualization version   GIF version

Theorem 2sqlem2 25908
Description: Lemma for 2sq 25920. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem2 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝐴,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
212sqlem1 25907 . . 3 (𝐴𝑆 ↔ ∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2))
3 elgz 16259 . . . . . . 7 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
43simp2bi 1140 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
53simp3bi 1141 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
6 gzcn 16260 . . . . . . 7 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
76absvalsq2d 14796 . . . . . 6 (𝑧 ∈ ℤ[i] → ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
8 oveq1 7158 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥↑2) = ((ℜ‘𝑧)↑2))
98oveq1d 7166 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → ((𝑥↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + (𝑦↑2)))
109eqeq2d 2836 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2))))
11 oveq1 7158 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → (𝑦↑2) = ((ℑ‘𝑧)↑2))
1211oveq2d 7167 . . . . . . . 8 (𝑦 = (ℑ‘𝑧) → (((ℜ‘𝑧)↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
1312eqeq2d 2836 . . . . . . 7 (𝑦 = (ℑ‘𝑧) → (((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))))
1410, 13rspc2ev 3638 . . . . . 6 (((ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ ∧ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
154, 5, 7, 14syl3anc 1365 . . . . 5 (𝑧 ∈ ℤ[i] → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
16 eqeq1 2829 . . . . . 6 (𝐴 = ((abs‘𝑧)↑2) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
17162rexbidv 3304 . . . . 5 (𝐴 = ((abs‘𝑧)↑2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
1815, 17syl5ibrcom 248 . . . 4 (𝑧 ∈ ℤ[i] → (𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
1918rexlimiv 3284 . . 3 (∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
202, 19sylbi 218 . 2 (𝐴𝑆 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
21 gzreim 16267 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℤ[i])
22 zcn 11978 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 ax-icn 10588 . . . . . . . . . 10 i ∈ ℂ
24 zcn 11978 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
25 mulcl 10613 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
2623, 24, 25sylancr 587 . . . . . . . . 9 (𝑦 ∈ ℤ → (i · 𝑦) ∈ ℂ)
27 addcl 10611 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2822, 26, 27syl2an 595 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2928absvalsq2d 14796 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘(𝑥 + (i · 𝑦)))↑2) = (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)))
30 zre 11977 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
31 zre 11977 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
32 crre 14466 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3330, 31, 32syl2an 595 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3433oveq1d 7166 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℜ‘(𝑥 + (i · 𝑦)))↑2) = (𝑥↑2))
35 crim 14467 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3630, 31, 35syl2an 595 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3736oveq1d 7166 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℑ‘(𝑥 + (i · 𝑦)))↑2) = (𝑦↑2))
3834, 37oveq12d 7169 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)) = ((𝑥↑2) + (𝑦↑2)))
3929, 38eqtr2d 2861 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
40 fveq2 6666 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → (abs‘𝑧) = (abs‘(𝑥 + (i · 𝑦))))
4140oveq1d 7166 . . . . . . 7 (𝑧 = (𝑥 + (i · 𝑦)) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
4241rspceeqv 3641 . . . . . 6 (((𝑥 + (i · 𝑦)) ∈ ℤ[i] ∧ ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2)) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4321, 39, 42syl2anc 584 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4412sqlem1 25907 . . . . 5 (((𝑥↑2) + (𝑦↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4543, 44sylibr 235 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆)
46 eleq1 2904 . . . 4 (𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝐴𝑆 ↔ ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆))
4745, 46syl5ibrcom 248 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆))
4847rexlimivv 3296 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆)
4920, 48impbii 210 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3143  cmpt 5142  ran crn 5554  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  ici 10531   + caddc 10532   · cmul 10534  2c2 11684  cz 11973  cexp 13422  cre 14449  cim 14450  abscabs 14586  ℤ[i]cgz 16257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-gz 16258
This theorem is referenced by:  2sqlem5  25912  2sqlem7  25914  2sq  25920
  Copyright terms: Public domain W3C validator