![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gznegcl | Structured version Visualization version GIF version |
Description: The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gznegcl | ⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℤ[i]) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn 16872 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
2 | 1 | negcld 11565 | . 2 ⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℂ) |
3 | 1 | renegd 15163 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
4 | elgz 16871 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
5 | 4 | simp2bi 1145 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
6 | 5 | znegcld 12675 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → -(ℜ‘𝐴) ∈ ℤ) |
7 | 3, 6 | eqeltrd 2832 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘-𝐴) ∈ ℤ) |
8 | 1 | imnegd 15164 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘-𝐴) = -(ℑ‘𝐴)) |
9 | 4 | simp3bi 1146 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
10 | 9 | znegcld 12675 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → -(ℑ‘𝐴) ∈ ℤ) |
11 | 8, 10 | eqeltrd 2832 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘-𝐴) ∈ ℤ) |
12 | elgz 16871 | . 2 ⊢ (-𝐴 ∈ ℤ[i] ↔ (-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ ℤ ∧ (ℑ‘-𝐴) ∈ ℤ)) | |
13 | 2, 7, 11, 12 | syl3anbrc 1342 | 1 ⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℤ[i]) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6543 ℂcc 11114 -cneg 11452 ℤcz 12565 ℜcre 15051 ℑcim 15052 ℤ[i]cgz 16869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-z 12566 df-cj 15053 df-re 15054 df-im 15055 df-gz 16870 |
This theorem is referenced by: gzsubcl 16880 gzsubrg 21289 |
Copyright terms: Public domain | W3C validator |