![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gzcjcl | Structured version Visualization version GIF version |
Description: The gaussian integers are closed under conjugation. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzcjcl | ⊢ (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i]) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn 15844 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
2 | 1 | cjcld 14145 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℂ) |
3 | 1 | recjd 14153 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) |
4 | elgz 15843 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
5 | 4 | simp2bi 1140 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
6 | 3, 5 | eqeltrd 2850 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘(∗‘𝐴)) ∈ ℤ) |
7 | 1 | imcjd 14154 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) |
8 | 4 | simp3bi 1141 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
9 | 8 | znegcld 11687 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → -(ℑ‘𝐴) ∈ ℤ) |
10 | 7, 9 | eqeltrd 2850 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘(∗‘𝐴)) ∈ ℤ) |
11 | elgz 15843 | . 2 ⊢ ((∗‘𝐴) ∈ ℤ[i] ↔ ((∗‘𝐴) ∈ ℂ ∧ (ℜ‘(∗‘𝐴)) ∈ ℤ ∧ (ℑ‘(∗‘𝐴)) ∈ ℤ)) | |
12 | 2, 6, 10, 11 | syl3anbrc 1428 | 1 ⊢ (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i]) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ‘cfv 6032 ℂcc 10137 -cneg 10470 ℤcz 11580 ∗ccj 14045 ℜcre 14046 ℑcim 14047 ℤ[i]cgz 15841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-resscn 10196 ax-1cn 10197 ax-icn 10198 ax-addcl 10199 ax-addrcl 10200 ax-mulcl 10201 ax-mulrcl 10202 ax-mulcom 10203 ax-addass 10204 ax-mulass 10205 ax-distr 10206 ax-i2m1 10207 ax-1ne0 10208 ax-1rid 10209 ax-rnegex 10210 ax-rrecex 10211 ax-cnre 10212 ax-pre-lttri 10213 ax-pre-lttrn 10214 ax-pre-ltadd 10215 ax-pre-mulgt0 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-pss 3740 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5824 df-ord 5870 df-on 5871 df-lim 5872 df-suc 5873 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-riota 6755 df-ov 6797 df-oprab 6798 df-mpt2 6799 df-om 7214 df-wrecs 7560 df-recs 7622 df-rdg 7660 df-er 7897 df-en 8111 df-dom 8112 df-sdom 8113 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 df-sub 10471 df-neg 10472 df-div 10888 df-nn 11224 df-2 11282 df-z 11581 df-cj 14048 df-re 14049 df-im 14050 df-gz 15842 |
This theorem is referenced by: mul4sqlem 15865 gzrngunit 20028 |
Copyright terms: Public domain | W3C validator |