Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntotbnd Structured version   Visualization version   GIF version

Theorem cntotbnd 35881
Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
cntotbnd.d 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cntotbnd (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))

Proof of Theorem cntotbnd
Dummy variables 𝑎 𝑏 𝑑 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 35874 . 2 (𝐷 ∈ (TotBnd‘𝑋) → 𝐷 ∈ (Bnd‘𝑋))
2 rpcn 12669 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
32adantl 481 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
4 gzcn 16561 . . . . . . . . 9 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
5 mulcl 10886 . . . . . . . . 9 ((𝑟 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑟 · 𝑧) ∈ ℂ)
63, 4, 5syl2an 595 . . . . . . . 8 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
76fmpttd 6971 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)):ℤ[i]⟶ℂ)
87frnd 6592 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
9 cnex 10883 . . . . . . 7 ℂ ∈ V
109elpw2 5264 . . . . . 6 (ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ↔ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
118, 10sylibr 233 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ)
12 cnmet 23841 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
13 cntotbnd.d . . . . . . . . . . . . . . . . . 18 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
1413bnd2lem 35876 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐷 ∈ (Bnd‘𝑋)) → 𝑋 ⊆ ℂ)
1512, 14mpan 686 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (Bnd‘𝑋) → 𝑋 ⊆ ℂ)
1615sselda 3917 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ ℂ)
1716adantrl 712 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ℂ)
1817recld 14833 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘𝑦) ∈ ℝ)
19 simprl 767 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ+)
2018, 19rerpdivcld 12732 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℝ)
21 halfre 12117 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
22 readdcl 10885 . . . . . . . . . . . 12 ((((ℜ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2320, 21, 22sylancl 585 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2423flcld 13446 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
2517imcld 14834 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘𝑦) ∈ ℝ)
2625, 19rerpdivcld 12732 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℝ)
27 readdcl 10885 . . . . . . . . . . . 12 ((((ℑ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2826, 21, 27sylancl 585 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2928flcld 13446 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
30 gzreim 16568 . . . . . . . . . 10 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
3124, 29, 30syl2anc 583 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
32 gzcn 16561 . . . . . . . . . . . . . . 15 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3331, 32syl 17 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3419rpcnd 12703 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℂ)
3519rpne0d 12706 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ≠ 0)
3617, 34, 35divcld 11681 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) ∈ ℂ)
3733, 36subcld 11262 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) ∈ ℂ)
3837abscld 15076 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) ∈ ℝ)
39 1re 10906 . . . . . . . . . . . . 13 1 ∈ ℝ
4039a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 1 ∈ ℝ)
4124zcnd 12356 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
42 ax-icn 10861 . . . . . . . . . . . . . . . . . . . . 21 i ∈ ℂ
4329zcnd 12356 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
44 mulcl 10886 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4542, 43, 44sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4620recnd 10934 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℂ)
4726recnd 10934 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℂ)
48 mulcl 10886 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ ((ℑ‘𝑦) / 𝑟) ∈ ℂ) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
4942, 47, 48sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
5041, 45, 46, 49addsub4d 11309 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
5136replimd 14836 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))))
5219rpred 12701 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ)
5352, 17, 35redivd 14868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘(𝑦 / 𝑟)) = ((ℜ‘𝑦) / 𝑟))
5452, 17, 35imdivd 14869 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘(𝑦 / 𝑟)) = ((ℑ‘𝑦) / 𝑟))
5554oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (ℑ‘(𝑦 / 𝑟))) = (i · ((ℑ‘𝑦) / 𝑟)))
5653, 55oveq12d 7273 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5751, 56eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5857oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))))
5942a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → i ∈ ℂ)
6059, 43, 47subdid 11361 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) = ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟))))
6160oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
6250, 58, 613eqtr4d 2788 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))
6362fveq2d 6760 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))))
6463oveq1d 7270 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2))
6524zred 12355 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6665, 20resubcld 11333 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ)
6729zred 12355 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6867, 26resubcld 11333 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ)
69 absreimsq 14932 . . . . . . . . . . . . . . . . 17 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ ∧ ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7066, 68, 69syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7164, 70eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7266resqcld 13893 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7368resqcld 13893 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7421resqcli 13831 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) ∈ ℝ
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) ∈ ℝ)
7621a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (1 / 2) ∈ ℝ)
77 absresq 14942 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
7866, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
79 rddif 14980 . . . . . . . . . . . . . . . . . . . 20 (((ℜ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8020, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8166recnd 10934 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℂ)
8281abscld 15076 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ∈ ℝ)
8381absge0d 15084 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))))
84 halfgt0 12119 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
8521, 84elrpii 12662 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) ∈ ℝ+
86 rpge0 12672 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
8785, 86mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (1 / 2))
8882, 76, 83, 87le2sqd 13902 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
8980, 88mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
9078, 89eqbrtrrd 5094 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
91 halfcn 12118 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℂ
9291sqvali 13825 . . . . . . . . . . . . . . . . . . 19 ((1 / 2)↑2) = ((1 / 2) · (1 / 2))
93 halflt1 12121 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
9421, 39, 21, 84ltmul1ii 11833 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) < 1 ↔ ((1 / 2) · (1 / 2)) < (1 · (1 / 2)))
9593, 94mpbi 229 . . . . . . . . . . . . . . . . . . . 20 ((1 / 2) · (1 / 2)) < (1 · (1 / 2))
9691mulid2i 10911 . . . . . . . . . . . . . . . . . . . 20 (1 · (1 / 2)) = (1 / 2)
9795, 96breqtri 5095 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) · (1 / 2)) < (1 / 2)
9892, 97eqbrtri 5091 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) < (1 / 2)
9998a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) < (1 / 2))
10072, 75, 76, 90, 99lelttrd 11063 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) < (1 / 2))
101 absresq 14942 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
10268, 101syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
103 rddif 14980 . . . . . . . . . . . . . . . . . . . 20 (((ℑ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10426, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10568recnd 10934 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
106105abscld 15076 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ∈ ℝ)
107105absge0d 15084 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))
108106, 76, 107, 87le2sqd 13902 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
109104, 108mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
110102, 109eqbrtrrd 5094 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
11173, 75, 76, 110, 99lelttrd 11063 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) < (1 / 2))
11272, 73, 40, 100, 111lt2halvesd 12151 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)) < 1)
11371, 112eqbrtrd 5092 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < 1)
114 sq1 13840 . . . . . . . . . . . . . 14 (1↑2) = 1
115113, 114breqtrrdi 5112 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2))
11637absge0d 15084 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))))
117 0le1 11428 . . . . . . . . . . . . . . 15 0 ≤ 1
118117a1i 11 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 1)
11938, 40, 116, 118lt2sqd 13901 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1 ↔ ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2)))
120115, 119mpbird 256 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1)
12138, 40, 19, 120ltmul2dd 12757 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) < (𝑟 · 1))
12234, 33mulcld 10926 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ)
123 eqid 2738 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 23840 . . . . . . . . . . . . 13 (((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
125122, 17, 124syl2anc 583 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
12634, 33, 36subdid 11361 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))))
12717, 34, 35divcan2d 11683 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (𝑦 / 𝑟)) = 𝑦)
128127oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
129126, 128eqtrd 2778 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
130129fveq2d 6760 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
13134, 37absmuld 15094 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
132130, 131eqtr3d 2780 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
13319rpge0d 12705 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 𝑟)
13452, 133absidd 15062 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘𝑟) = 𝑟)
135134oveq1d 7270 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
136125, 132, 1353eqtrrd 2783 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦))
13734mulid1d 10923 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · 1) = 𝑟)
138121, 136, 1373brtr3d 5101 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟)
139 cnxmet 23842 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
140139a1i 11 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
141 rpxr 12668 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
142141ad2antrl 724 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ*)
143 elbl2 23451 . . . . . . . . . . 11 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
144140, 142, 122, 17, 143syl22anc 835 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
145138, 144mpbird 256 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
146 oveq2 7263 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑟 · 𝑧) = (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))))
147146oveq1d 7270 . . . . . . . . . . 11 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
148147eleq2d 2824 . . . . . . . . . 10 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)))
149148rspcev 3552 . . . . . . . . 9 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] ∧ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
15031, 145, 149syl2anc 583 . . . . . . . 8 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
151150expr 456 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋 → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
152 eliun 4925 . . . . . . . 8 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
153 ovex 7288 . . . . . . . . . 10 (𝑟 · 𝑧) ∈ V
154153rgenw 3075 . . . . . . . . 9 𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V
155 eqid 2738 . . . . . . . . . 10 (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) = (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))
156 oveq1 7262 . . . . . . . . . . 11 (𝑥 = (𝑟 · 𝑧) → (𝑥(ball‘(abs ∘ − ))𝑟) = ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
157156eleq2d 2824 . . . . . . . . . 10 (𝑥 = (𝑟 · 𝑧) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
158155, 157rexrnmptw 6953 . . . . . . . . 9 (∀𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V → (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
159154, 158ax-mp 5 . . . . . . . 8 (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
160152, 159bitri 274 . . . . . . 7 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
161151, 160syl6ibr 251 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
162161ssrdv 3923 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
163 simpl 482 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Bnd‘𝑋))
164 0cn 10898 . . . . . . . 8 0 ∈ ℂ
16513ssbnd 35873 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 0 ∈ ℂ) → (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑)))
16612, 164, 165mp2an 688 . . . . . . 7 (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
167163, 166sylib 217 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
168 fzfi 13620 . . . . . . . . 9 (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin
169 xpfi 9015 . . . . . . . . 9 (((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin ∧ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin) → ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin)
170168, 168, 169mp2an 688 . . . . . . . 8 ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin
171 eqid 2738 . . . . . . . . . 10 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) = (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
172 ovex 7288 . . . . . . . . . 10 (𝑟 · (𝑎 + (i · 𝑏))) ∈ V
173171, 172fnmpoi 7883 . . . . . . . . 9 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
174 dffn4 6678 . . . . . . . . 9 ((𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ↔ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
175173, 174mpbi 229 . . . . . . . 8 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
176 fofi 9035 . . . . . . . 8 ((((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin ∧ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin)
177170, 175, 176mp2an 688 . . . . . . 7 ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin
178155, 153elrnmpti 5858 . . . . . . . . . 10 (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ↔ ∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧))
179 elgz 16560 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
180179simp2bi 1144 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
181180ad2antlr 723 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℤ)
182181zcnd 12356 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℂ)
183182abscld 15076 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ∈ ℝ)
1844ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 ∈ ℂ)
185184abscld 15076 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ∈ ℝ)
186 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ+)
187186adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ+)
188187rpred 12701 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ)
189 simplrl 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ)
190189adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑑 ∈ ℝ)
191188, 190readdcld 10935 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 + 𝑑) ∈ ℝ)
192191, 187rerpdivcld 12732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) ∈ ℝ)
193192flcld 13446 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (⌊‘((𝑟 + 𝑑) / 𝑟)) ∈ ℤ)
194193peano2zd 12358 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
195194zred 12355 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℝ)
196 absrele 14948 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
197184, 196syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
198187rpcnd 12703 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℂ)
199198, 184absmuld 15094 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = ((abs‘𝑟) · (abs‘𝑧)))
200187rpge0d 12705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 0 ≤ 𝑟)
201188, 200absidd 15062 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑟) = 𝑟)
202201oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘𝑟) · (abs‘𝑧)) = (𝑟 · (abs‘𝑧)))
203199, 202eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = (𝑟 · (abs‘𝑧)))
204 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
205 sslin 4165 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
207139a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (abs ∘ − ) ∈ (∞Met‘ℂ))
2086adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
209164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 0 ∈ ℂ)
210186rpxrd 12702 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ*)
211189rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ*)
212 bldisj 23459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅)
2132123exp2 1352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → (𝑟 ∈ ℝ* → (𝑑 ∈ ℝ* → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))))
214213imp32 418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ*)) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
215207, 208, 209, 210, 211, 214syl32anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
216 sseq0 4330 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅)
217206, 215, 216syl6an 680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅))
218217necon3ad 2955 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0)))
219218imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))
220 rexadd 12895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
221188, 190, 220syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
222208adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) ∈ ℂ)
223123cnmetdval 23840 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
224222, 164, 223sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
225222subid1d 11251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧) − 0) = (𝑟 · 𝑧))
226225fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘((𝑟 · 𝑧) − 0)) = (abs‘(𝑟 · 𝑧)))
227224, 226eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘(𝑟 · 𝑧)))
228221, 227breq12d 5083 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) ↔ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
229219, 228mtbid 323 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧)))
230222abscld 15076 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) ∈ ℝ)
231230, 191ltnled 11052 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑) ↔ ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
232229, 231mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑))
233203, 232eqbrtrrd 5094 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑))
234185, 191, 187ltmuldiv2d 12749 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑) ↔ (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟)))
235233, 234mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟))
236 flltp1 13448 . . . . . . . . . . . . . . . . . . . . 21 (((𝑟 + 𝑑) / 𝑟) ∈ ℝ → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
237192, 236syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
238185, 192, 195, 235, 237lttrd 11066 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
239185, 195, 238ltled 11053 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
240183, 185, 195, 197, 239letrd 11062 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
241181zred 12355 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℝ)
242241, 195absled 15070 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
243240, 242mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
244194znegcld 12357 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
245 elfz 13174 . . . . . . . . . . . . . . . . 17 (((ℜ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
246181, 244, 194, 245syl3anc 1369 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
247243, 246mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
248179simp3bi 1145 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
249248ad2antlr 723 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℤ)
250249zcnd 12356 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℂ)
251250abscld 15076 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ∈ ℝ)
252 absimle 14949 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
253184, 252syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
254251, 185, 195, 253, 239letrd 11062 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
255249zred 12355 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℝ)
256255, 195absled 15070 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
257254, 256mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
258 elfz 13174 . . . . . . . . . . . . . . . . 17 (((ℑ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
259249, 244, 194, 258syl3anc 1369 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
260257, 259mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
261184replimd 14836 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
262261oveq2d 7271 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
263 oveq1 7262 . . . . . . . . . . . . . . . . . 18 (𝑎 = (ℜ‘𝑧) → (𝑎 + (i · 𝑏)) = ((ℜ‘𝑧) + (i · 𝑏)))
264263oveq2d 7271 . . . . . . . . . . . . . . . . 17 (𝑎 = (ℜ‘𝑧) → (𝑟 · (𝑎 + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))))
265264eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑎 = (ℜ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏)))))
266 oveq2 7263 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (ℑ‘𝑧) → (i · 𝑏) = (i · (ℑ‘𝑧)))
267266oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑏 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑏)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
268267oveq2d 7271 . . . . . . . . . . . . . . . . 17 (𝑏 = (ℑ‘𝑧) → (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
269268eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑏 = (ℑ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))))
270265, 269rspc2ev 3564 . . . . . . . . . . . . . . 15 (((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
271247, 260, 262, 270syl3anc 1369 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
272271ex 412 . . . . . . . . . . . . 13 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏)))))
273171, 172elrnmpo 7388 . . . . . . . . . . . . 13 ((𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
274272, 273syl6ibr 251 . . . . . . . . . . . 12 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
275156ineq1d 4142 . . . . . . . . . . . . . 14 (𝑥 = (𝑟 · 𝑧) → ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
276275neeq1d 3002 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ ↔ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅))
277 eleq1 2826 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
278276, 277imbi12d 344 . . . . . . . . . . . 12 (𝑥 = (𝑟 · 𝑧) → ((((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) ↔ ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
279274, 278syl5ibrcom 246 . . . . . . . . . . 11 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
280279rexlimdva 3212 . . . . . . . . . 10 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
281178, 280syl5bi 241 . . . . . . . . 9 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
2822813imp 1109 . . . . . . . 8 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∧ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
283282rabssdv 4004 . . . . . . 7 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
284 ssfi 8918 . . . . . . 7 ((ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
285177, 283, 284sylancr 586 . . . . . 6 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
286167, 285rexlimddv 3219 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
287 iuneq1 4937 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) = 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
288287sseq2d 3949 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
289 rabeq 3408 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} = {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅})
290289eleq1d 2823 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ({𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin ↔ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
291288, 290anbi12d 630 . . . . . 6 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ((𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin) ↔ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
292291rspcev 3552 . . . . 5 ((ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ∧ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29311, 162, 286, 292syl12anc 833 . . . 4 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
294293ralrimiva 3107 . . 3 (𝐷 ∈ (Bnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29513sstotbnd3 35861 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
29612, 15, 295sylancr 586 . . 3 (𝐷 ∈ (Bnd‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
297294, 296mpbird 256 . 2 (𝐷 ∈ (Bnd‘𝑋) → 𝐷 ∈ (TotBnd‘𝑋))
2981, 297impbii 208 1 (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  cres 5582  ccom 5584   Fn wfn 6413  ontowfo 6416  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cz 12249  +crp 12659   +𝑒 cxad 12775  ...cfz 13168  cfl 13438  cexp 13710  cre 14736  cim 14737  abscabs 14873  ℤ[i]cgz 16558  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  TotBndctotbnd 35851  Bndcbnd 35852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-gz 16559  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-totbnd 35853  df-bnd 35864
This theorem is referenced by:  cnpwstotbnd  35882
  Copyright terms: Public domain W3C validator