Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntotbnd Structured version   Visualization version   GIF version

Theorem cntotbnd 37786
Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
cntotbnd.d 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cntotbnd (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))

Proof of Theorem cntotbnd
Dummy variables 𝑎 𝑏 𝑑 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 37779 . 2 (𝐷 ∈ (TotBnd‘𝑋) → 𝐷 ∈ (Bnd‘𝑋))
2 rpcn 12904 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
32adantl 481 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
4 gzcn 16844 . . . . . . . . 9 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
5 mulcl 11093 . . . . . . . . 9 ((𝑟 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑟 · 𝑧) ∈ ℂ)
63, 4, 5syl2an 596 . . . . . . . 8 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
76fmpttd 7049 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)):ℤ[i]⟶ℂ)
87frnd 6660 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
9 cnex 11090 . . . . . . 7 ℂ ∈ V
109elpw2 5273 . . . . . 6 (ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ↔ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
118, 10sylibr 234 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ)
12 cnmet 24657 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
13 cntotbnd.d . . . . . . . . . . . . . . . . . 18 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
1413bnd2lem 37781 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐷 ∈ (Bnd‘𝑋)) → 𝑋 ⊆ ℂ)
1512, 14mpan 690 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (Bnd‘𝑋) → 𝑋 ⊆ ℂ)
1615sselda 3935 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ ℂ)
1716adantrl 716 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ℂ)
1817recld 15101 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘𝑦) ∈ ℝ)
19 simprl 770 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ+)
2018, 19rerpdivcld 12968 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℝ)
21 halfre 12337 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
22 readdcl 11092 . . . . . . . . . . . 12 ((((ℜ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2320, 21, 22sylancl 586 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2423flcld 13702 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
2517imcld 15102 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘𝑦) ∈ ℝ)
2625, 19rerpdivcld 12968 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℝ)
27 readdcl 11092 . . . . . . . . . . . 12 ((((ℑ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2826, 21, 27sylancl 586 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2928flcld 13702 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
30 gzreim 16851 . . . . . . . . . 10 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
3124, 29, 30syl2anc 584 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
32 gzcn 16844 . . . . . . . . . . . . . . 15 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3331, 32syl 17 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3419rpcnd 12939 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℂ)
3519rpne0d 12942 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ≠ 0)
3617, 34, 35divcld 11900 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) ∈ ℂ)
3733, 36subcld 11475 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) ∈ ℂ)
3837abscld 15346 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) ∈ ℝ)
39 1re 11115 . . . . . . . . . . . . 13 1 ∈ ℝ
4039a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 1 ∈ ℝ)
4124zcnd 12581 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
42 ax-icn 11068 . . . . . . . . . . . . . . . . . . . . 21 i ∈ ℂ
4329zcnd 12581 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
44 mulcl 11093 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4542, 43, 44sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4620recnd 11143 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℂ)
4726recnd 11143 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℂ)
48 mulcl 11093 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ ((ℑ‘𝑦) / 𝑟) ∈ ℂ) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
4942, 47, 48sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
5041, 45, 46, 49addsub4d 11522 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
5136replimd 15104 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))))
5219rpred 12937 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ)
5352, 17, 35redivd 15136 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘(𝑦 / 𝑟)) = ((ℜ‘𝑦) / 𝑟))
5452, 17, 35imdivd 15137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘(𝑦 / 𝑟)) = ((ℑ‘𝑦) / 𝑟))
5554oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (ℑ‘(𝑦 / 𝑟))) = (i · ((ℑ‘𝑦) / 𝑟)))
5653, 55oveq12d 7367 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5751, 56eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5857oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))))
5942a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → i ∈ ℂ)
6059, 43, 47subdid 11576 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) = ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟))))
6160oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
6250, 58, 613eqtr4d 2774 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))
6362fveq2d 6826 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))))
6463oveq1d 7364 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2))
6524zred 12580 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6665, 20resubcld 11548 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ)
6729zred 12580 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6867, 26resubcld 11548 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ)
69 absreimsq 15199 . . . . . . . . . . . . . . . . 17 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ ∧ ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7066, 68, 69syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7164, 70eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7266resqcld 14032 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7368resqcld 14032 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7421resqcli 14093 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) ∈ ℝ
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) ∈ ℝ)
7621a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (1 / 2) ∈ ℝ)
77 absresq 15209 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
7866, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
79 rddif 15248 . . . . . . . . . . . . . . . . . . . 20 (((ℜ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8020, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8166recnd 11143 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℂ)
8281abscld 15346 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ∈ ℝ)
8381absge0d 15354 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))))
84 halfgt0 12339 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
8521, 84elrpii 12896 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) ∈ ℝ+
86 rpge0 12907 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
8785, 86mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (1 / 2))
8882, 76, 83, 87le2sqd 14164 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
8980, 88mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
9078, 89eqbrtrrd 5116 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
91 halfcn 12338 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℂ
9291sqvali 14087 . . . . . . . . . . . . . . . . . . 19 ((1 / 2)↑2) = ((1 / 2) · (1 / 2))
93 halflt1 12341 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
9421, 39, 21, 84ltmul1ii 12053 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) < 1 ↔ ((1 / 2) · (1 / 2)) < (1 · (1 / 2)))
9593, 94mpbi 230 . . . . . . . . . . . . . . . . . . . 20 ((1 / 2) · (1 / 2)) < (1 · (1 / 2))
9691mullidi 11120 . . . . . . . . . . . . . . . . . . . 20 (1 · (1 / 2)) = (1 / 2)
9795, 96breqtri 5117 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) · (1 / 2)) < (1 / 2)
9892, 97eqbrtri 5113 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) < (1 / 2)
9998a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) < (1 / 2))
10072, 75, 76, 90, 99lelttrd 11274 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) < (1 / 2))
101 absresq 15209 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
10268, 101syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
103 rddif 15248 . . . . . . . . . . . . . . . . . . . 20 (((ℑ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10426, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10568recnd 11143 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
106105abscld 15346 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ∈ ℝ)
107105absge0d 15354 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))
108106, 76, 107, 87le2sqd 14164 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
109104, 108mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
110102, 109eqbrtrrd 5116 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
11173, 75, 76, 110, 99lelttrd 11274 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) < (1 / 2))
11272, 73, 40, 100, 111lt2halvesd 12372 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)) < 1)
11371, 112eqbrtrd 5114 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < 1)
114 sq1 14102 . . . . . . . . . . . . . 14 (1↑2) = 1
115113, 114breqtrrdi 5134 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2))
11637absge0d 15354 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))))
117 0le1 11643 . . . . . . . . . . . . . . 15 0 ≤ 1
118117a1i 11 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 1)
11938, 40, 116, 118lt2sqd 14163 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1 ↔ ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2)))
120115, 119mpbird 257 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1)
12138, 40, 19, 120ltmul2dd 12993 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) < (𝑟 · 1))
12234, 33mulcld 11135 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ)
123 eqid 2729 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 24656 . . . . . . . . . . . . 13 (((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
125122, 17, 124syl2anc 584 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
12634, 33, 36subdid 11576 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))))
12717, 34, 35divcan2d 11902 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (𝑦 / 𝑟)) = 𝑦)
128127oveq2d 7365 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
129126, 128eqtrd 2764 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
130129fveq2d 6826 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
13134, 37absmuld 15364 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
132130, 131eqtr3d 2766 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
13319rpge0d 12941 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 𝑟)
13452, 133absidd 15330 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘𝑟) = 𝑟)
135134oveq1d 7364 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
136125, 132, 1353eqtrrd 2769 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦))
13734mulridd 11132 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · 1) = 𝑟)
138121, 136, 1373brtr3d 5123 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟)
139 cnxmet 24658 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
140139a1i 11 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
141 rpxr 12903 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
142141ad2antrl 728 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ*)
143 elbl2 24276 . . . . . . . . . . 11 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
144140, 142, 122, 17, 143syl22anc 838 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
145138, 144mpbird 257 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
146 oveq2 7357 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑟 · 𝑧) = (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))))
147146oveq1d 7364 . . . . . . . . . . 11 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
148147eleq2d 2814 . . . . . . . . . 10 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)))
149148rspcev 3577 . . . . . . . . 9 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] ∧ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
15031, 145, 149syl2anc 584 . . . . . . . 8 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
151150expr 456 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋 → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
152 eliun 4945 . . . . . . . 8 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
153 ovex 7382 . . . . . . . . . 10 (𝑟 · 𝑧) ∈ V
154153rgenw 3048 . . . . . . . . 9 𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V
155 eqid 2729 . . . . . . . . . 10 (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) = (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))
156 oveq1 7356 . . . . . . . . . . 11 (𝑥 = (𝑟 · 𝑧) → (𝑥(ball‘(abs ∘ − ))𝑟) = ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
157156eleq2d 2814 . . . . . . . . . 10 (𝑥 = (𝑟 · 𝑧) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
158155, 157rexrnmptw 7029 . . . . . . . . 9 (∀𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V → (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
159154, 158ax-mp 5 . . . . . . . 8 (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
160152, 159bitri 275 . . . . . . 7 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
161151, 160imbitrrdi 252 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
162161ssrdv 3941 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
163 simpl 482 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Bnd‘𝑋))
164 0cn 11107 . . . . . . . 8 0 ∈ ℂ
16513ssbnd 37778 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 0 ∈ ℂ) → (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑)))
16612, 164, 165mp2an 692 . . . . . . 7 (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
167163, 166sylib 218 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
168 fzfi 13879 . . . . . . . . 9 (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin
169 xpfi 9209 . . . . . . . . 9 (((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin ∧ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin) → ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin)
170168, 168, 169mp2an 692 . . . . . . . 8 ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin
171 eqid 2729 . . . . . . . . . 10 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) = (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
172 ovex 7382 . . . . . . . . . 10 (𝑟 · (𝑎 + (i · 𝑏))) ∈ V
173171, 172fnmpoi 8005 . . . . . . . . 9 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
174 dffn4 6742 . . . . . . . . 9 ((𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ↔ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
175173, 174mpbi 230 . . . . . . . 8 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
176 fofi 9202 . . . . . . . 8 ((((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin ∧ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin)
177170, 175, 176mp2an 692 . . . . . . 7 ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin
178155, 153elrnmpti 5904 . . . . . . . . . 10 (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ↔ ∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧))
179 elgz 16843 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
180179simp2bi 1146 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
181180ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℤ)
182181zcnd 12581 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℂ)
183182abscld 15346 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ∈ ℝ)
1844ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 ∈ ℂ)
185184abscld 15346 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ∈ ℝ)
186 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ+)
187186adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ+)
188187rpred 12937 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ)
189 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ)
190189adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑑 ∈ ℝ)
191188, 190readdcld 11144 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 + 𝑑) ∈ ℝ)
192191, 187rerpdivcld 12968 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) ∈ ℝ)
193192flcld 13702 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (⌊‘((𝑟 + 𝑑) / 𝑟)) ∈ ℤ)
194193peano2zd 12583 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
195194zred 12580 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℝ)
196 absrele 15215 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
197184, 196syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
198187rpcnd 12939 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℂ)
199198, 184absmuld 15364 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = ((abs‘𝑟) · (abs‘𝑧)))
200187rpge0d 12941 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 0 ≤ 𝑟)
201188, 200absidd 15330 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑟) = 𝑟)
202201oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘𝑟) · (abs‘𝑧)) = (𝑟 · (abs‘𝑧)))
203199, 202eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = (𝑟 · (abs‘𝑧)))
204 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
205 sslin 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
207139a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (abs ∘ − ) ∈ (∞Met‘ℂ))
2086adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
209164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 0 ∈ ℂ)
210186rpxrd 12938 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ*)
211189rexrd 11165 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ*)
212 bldisj 24284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅)
2132123exp2 1355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → (𝑟 ∈ ℝ* → (𝑑 ∈ ℝ* → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))))
214213imp32 418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ*)) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
215207, 208, 209, 210, 211, 214syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
216 sseq0 4354 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅)
217206, 215, 216syl6an 684 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅))
218217necon3ad 2938 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0)))
219218imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))
220 rexadd 13134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
221188, 190, 220syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
222208adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) ∈ ℂ)
223123cnmetdval 24656 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
224222, 164, 223sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
225222subid1d 11464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧) − 0) = (𝑟 · 𝑧))
226225fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘((𝑟 · 𝑧) − 0)) = (abs‘(𝑟 · 𝑧)))
227224, 226eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘(𝑟 · 𝑧)))
228221, 227breq12d 5105 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) ↔ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
229219, 228mtbid 324 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧)))
230222abscld 15346 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) ∈ ℝ)
231230, 191ltnled 11263 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑) ↔ ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
232229, 231mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑))
233203, 232eqbrtrrd 5116 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑))
234185, 191, 187ltmuldiv2d 12985 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑) ↔ (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟)))
235233, 234mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟))
236 flltp1 13704 . . . . . . . . . . . . . . . . . . . . 21 (((𝑟 + 𝑑) / 𝑟) ∈ ℝ → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
237192, 236syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
238185, 192, 195, 235, 237lttrd 11277 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
239185, 195, 238ltled 11264 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
240183, 185, 195, 197, 239letrd 11273 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
241181zred 12580 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℝ)
242241, 195absled 15340 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
243240, 242mpbid 232 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
244194znegcld 12582 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
245 elfz 13416 . . . . . . . . . . . . . . . . 17 (((ℜ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
246181, 244, 194, 245syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
247243, 246mpbird 257 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
248179simp3bi 1147 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
249248ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℤ)
250249zcnd 12581 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℂ)
251250abscld 15346 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ∈ ℝ)
252 absimle 15216 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
253184, 252syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
254251, 185, 195, 253, 239letrd 11273 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
255249zred 12580 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℝ)
256255, 195absled 15340 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
257254, 256mpbid 232 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
258 elfz 13416 . . . . . . . . . . . . . . . . 17 (((ℑ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
259249, 244, 194, 258syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
260257, 259mpbird 257 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
261184replimd 15104 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
262261oveq2d 7365 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
263 oveq1 7356 . . . . . . . . . . . . . . . . . 18 (𝑎 = (ℜ‘𝑧) → (𝑎 + (i · 𝑏)) = ((ℜ‘𝑧) + (i · 𝑏)))
264263oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑎 = (ℜ‘𝑧) → (𝑟 · (𝑎 + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))))
265264eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑎 = (ℜ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏)))))
266 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (ℑ‘𝑧) → (i · 𝑏) = (i · (ℑ‘𝑧)))
267266oveq2d 7365 . . . . . . . . . . . . . . . . . 18 (𝑏 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑏)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
268267oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑏 = (ℑ‘𝑧) → (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
269268eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑏 = (ℑ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))))
270265, 269rspc2ev 3590 . . . . . . . . . . . . . . 15 (((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
271247, 260, 262, 270syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
272271ex 412 . . . . . . . . . . . . 13 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏)))))
273171, 172elrnmpo 7485 . . . . . . . . . . . . 13 ((𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
274272, 273imbitrrdi 252 . . . . . . . . . . . 12 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
275156ineq1d 4170 . . . . . . . . . . . . . 14 (𝑥 = (𝑟 · 𝑧) → ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
276275neeq1d 2984 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ ↔ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅))
277 eleq1 2816 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
278276, 277imbi12d 344 . . . . . . . . . . . 12 (𝑥 = (𝑟 · 𝑧) → ((((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) ↔ ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
279274, 278syl5ibrcom 247 . . . . . . . . . . 11 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
280279rexlimdva 3130 . . . . . . . . . 10 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
281178, 280biimtrid 242 . . . . . . . . 9 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
2822813imp 1110 . . . . . . . 8 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∧ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
283282rabssdv 4026 . . . . . . 7 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
284 ssfi 9087 . . . . . . 7 ((ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
285177, 283, 284sylancr 587 . . . . . 6 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
286167, 285rexlimddv 3136 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
287 iuneq1 4958 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) = 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
288287sseq2d 3968 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
289 rabeq 3409 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} = {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅})
290289eleq1d 2813 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ({𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin ↔ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
291288, 290anbi12d 632 . . . . . 6 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ((𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin) ↔ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
292291rspcev 3577 . . . . 5 ((ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ∧ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29311, 162, 286, 292syl12anc 836 . . . 4 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
294293ralrimiva 3121 . . 3 (𝐷 ∈ (Bnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29513sstotbnd3 37766 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
29612, 15, 295sylancr 587 . . 3 (𝐷 ∈ (Bnd‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
297294, 296mpbird 257 . 2 (𝐷 ∈ (Bnd‘𝑋) → 𝐷 ∈ (TotBnd‘𝑋))
2981, 297impbii 209 1 (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551   ciun 4941   class class class wbr 5092  cmpt 5173   × cxp 5617  ran crn 5620  cres 5621  ccom 5623   Fn wfn 6477  ontowfo 6480  cfv 6482  (class class class)co 7349  cmpo 7351  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  cz 12471  +crp 12893   +𝑒 cxad 13012  ...cfz 13410  cfl 13694  cexp 13968  cre 15004  cim 15005  abscabs 15141  ℤ[i]cgz 16841  ∞Metcxmet 21246  Metcmet 21247  ballcbl 21248  TotBndctotbnd 37756  Bndcbnd 37757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-gz 16842  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-totbnd 37758  df-bnd 37769
This theorem is referenced by:  cnpwstotbnd  37787
  Copyright terms: Public domain W3C validator