Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntotbnd Structured version   Visualization version   GIF version

Theorem cntotbnd 35234
Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
cntotbnd.d 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cntotbnd (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))

Proof of Theorem cntotbnd
Dummy variables 𝑎 𝑏 𝑑 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 35227 . 2 (𝐷 ∈ (TotBnd‘𝑋) → 𝐷 ∈ (Bnd‘𝑋))
2 rpcn 12387 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
32adantl 485 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
4 gzcn 16258 . . . . . . . . 9 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
5 mulcl 10610 . . . . . . . . 9 ((𝑟 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑟 · 𝑧) ∈ ℂ)
63, 4, 5syl2an 598 . . . . . . . 8 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
76fmpttd 6856 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)):ℤ[i]⟶ℂ)
87frnd 6494 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
9 cnex 10607 . . . . . . 7 ℂ ∈ V
109elpw2 5212 . . . . . 6 (ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ↔ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
118, 10sylibr 237 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ)
12 cnmet 23377 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
13 cntotbnd.d . . . . . . . . . . . . . . . . . 18 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
1413bnd2lem 35229 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐷 ∈ (Bnd‘𝑋)) → 𝑋 ⊆ ℂ)
1512, 14mpan 689 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (Bnd‘𝑋) → 𝑋 ⊆ ℂ)
1615sselda 3915 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ ℂ)
1716adantrl 715 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ℂ)
1817recld 14545 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘𝑦) ∈ ℝ)
19 simprl 770 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ+)
2018, 19rerpdivcld 12450 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℝ)
21 halfre 11839 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
22 readdcl 10609 . . . . . . . . . . . 12 ((((ℜ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2320, 21, 22sylancl 589 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2423flcld 13163 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
2517imcld 14546 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘𝑦) ∈ ℝ)
2625, 19rerpdivcld 12450 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℝ)
27 readdcl 10609 . . . . . . . . . . . 12 ((((ℑ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2826, 21, 27sylancl 589 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2928flcld 13163 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
30 gzreim 16265 . . . . . . . . . 10 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
3124, 29, 30syl2anc 587 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
32 gzcn 16258 . . . . . . . . . . . . . . 15 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3331, 32syl 17 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3419rpcnd 12421 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℂ)
3519rpne0d 12424 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ≠ 0)
3617, 34, 35divcld 11405 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) ∈ ℂ)
3733, 36subcld 10986 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) ∈ ℂ)
3837abscld 14788 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) ∈ ℝ)
39 1re 10630 . . . . . . . . . . . . 13 1 ∈ ℝ
4039a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 1 ∈ ℝ)
4124zcnd 12076 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
42 ax-icn 10585 . . . . . . . . . . . . . . . . . . . . 21 i ∈ ℂ
4329zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
44 mulcl 10610 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4542, 43, 44sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4620recnd 10658 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℂ)
4726recnd 10658 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℂ)
48 mulcl 10610 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ ((ℑ‘𝑦) / 𝑟) ∈ ℂ) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
4942, 47, 48sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
5041, 45, 46, 49addsub4d 11033 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
5136replimd 14548 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))))
5219rpred 12419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ)
5352, 17, 35redivd 14580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘(𝑦 / 𝑟)) = ((ℜ‘𝑦) / 𝑟))
5452, 17, 35imdivd 14581 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘(𝑦 / 𝑟)) = ((ℑ‘𝑦) / 𝑟))
5554oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (ℑ‘(𝑦 / 𝑟))) = (i · ((ℑ‘𝑦) / 𝑟)))
5653, 55oveq12d 7153 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5751, 56eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5857oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))))
5942a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → i ∈ ℂ)
6059, 43, 47subdid 11085 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) = ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟))))
6160oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
6250, 58, 613eqtr4d 2843 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))
6362fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))))
6463oveq1d 7150 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2))
6524zred 12075 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6665, 20resubcld 11057 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ)
6729zred 12075 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6867, 26resubcld 11057 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ)
69 absreimsq 14644 . . . . . . . . . . . . . . . . 17 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ ∧ ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7066, 68, 69syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7164, 70eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7266resqcld 13607 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7368resqcld 13607 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7421resqcli 13545 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) ∈ ℝ
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) ∈ ℝ)
7621a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (1 / 2) ∈ ℝ)
77 absresq 14654 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
7866, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
79 rddif 14692 . . . . . . . . . . . . . . . . . . . 20 (((ℜ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8020, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8166recnd 10658 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℂ)
8281abscld 14788 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ∈ ℝ)
8381absge0d 14796 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))))
84 halfgt0 11841 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
8521, 84elrpii 12380 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) ∈ ℝ+
86 rpge0 12390 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
8785, 86mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (1 / 2))
8882, 76, 83, 87le2sqd 13616 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
8980, 88mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
9078, 89eqbrtrrd 5054 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
91 halfcn 11840 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℂ
9291sqvali 13539 . . . . . . . . . . . . . . . . . . 19 ((1 / 2)↑2) = ((1 / 2) · (1 / 2))
93 halflt1 11843 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
9421, 39, 21, 84ltmul1ii 11557 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) < 1 ↔ ((1 / 2) · (1 / 2)) < (1 · (1 / 2)))
9593, 94mpbi 233 . . . . . . . . . . . . . . . . . . . 20 ((1 / 2) · (1 / 2)) < (1 · (1 / 2))
9691mulid2i 10635 . . . . . . . . . . . . . . . . . . . 20 (1 · (1 / 2)) = (1 / 2)
9795, 96breqtri 5055 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) · (1 / 2)) < (1 / 2)
9892, 97eqbrtri 5051 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) < (1 / 2)
9998a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) < (1 / 2))
10072, 75, 76, 90, 99lelttrd 10787 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) < (1 / 2))
101 absresq 14654 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
10268, 101syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
103 rddif 14692 . . . . . . . . . . . . . . . . . . . 20 (((ℑ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10426, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10568recnd 10658 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
106105abscld 14788 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ∈ ℝ)
107105absge0d 14796 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))
108106, 76, 107, 87le2sqd 13616 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
109104, 108mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
110102, 109eqbrtrrd 5054 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
11173, 75, 76, 110, 99lelttrd 10787 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) < (1 / 2))
11272, 73, 40, 100, 111lt2halvesd 11873 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)) < 1)
11371, 112eqbrtrd 5052 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < 1)
114 sq1 13554 . . . . . . . . . . . . . 14 (1↑2) = 1
115113, 114breqtrrdi 5072 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2))
11637absge0d 14796 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))))
117 0le1 11152 . . . . . . . . . . . . . . 15 0 ≤ 1
118117a1i 11 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 1)
11938, 40, 116, 118lt2sqd 13615 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1 ↔ ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2)))
120115, 119mpbird 260 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1)
12138, 40, 19, 120ltmul2dd 12475 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) < (𝑟 · 1))
12234, 33mulcld 10650 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ)
123 eqid 2798 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 23376 . . . . . . . . . . . . 13 (((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
125122, 17, 124syl2anc 587 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
12634, 33, 36subdid 11085 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))))
12717, 34, 35divcan2d 11407 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (𝑦 / 𝑟)) = 𝑦)
128127oveq2d 7151 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
129126, 128eqtrd 2833 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
130129fveq2d 6649 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
13134, 37absmuld 14806 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
132130, 131eqtr3d 2835 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
13319rpge0d 12423 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 𝑟)
13452, 133absidd 14774 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘𝑟) = 𝑟)
135134oveq1d 7150 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
136125, 132, 1353eqtrrd 2838 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦))
13734mulid1d 10647 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · 1) = 𝑟)
138121, 136, 1373brtr3d 5061 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟)
139 cnxmet 23378 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
140139a1i 11 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
141 rpxr 12386 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
142141ad2antrl 727 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ*)
143 elbl2 22997 . . . . . . . . . . 11 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
144140, 142, 122, 17, 143syl22anc 837 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
145138, 144mpbird 260 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
146 oveq2 7143 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑟 · 𝑧) = (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))))
147146oveq1d 7150 . . . . . . . . . . 11 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
148147eleq2d 2875 . . . . . . . . . 10 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)))
149148rspcev 3571 . . . . . . . . 9 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] ∧ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
15031, 145, 149syl2anc 587 . . . . . . . 8 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
151150expr 460 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋 → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
152 eliun 4885 . . . . . . . 8 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
153 ovex 7168 . . . . . . . . . 10 (𝑟 · 𝑧) ∈ V
154153rgenw 3118 . . . . . . . . 9 𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V
155 eqid 2798 . . . . . . . . . 10 (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) = (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))
156 oveq1 7142 . . . . . . . . . . 11 (𝑥 = (𝑟 · 𝑧) → (𝑥(ball‘(abs ∘ − ))𝑟) = ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
157156eleq2d 2875 . . . . . . . . . 10 (𝑥 = (𝑟 · 𝑧) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
158155, 157rexrnmptw 6838 . . . . . . . . 9 (∀𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V → (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
159154, 158ax-mp 5 . . . . . . . 8 (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
160152, 159bitri 278 . . . . . . 7 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
161151, 160syl6ibr 255 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
162161ssrdv 3921 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
163 simpl 486 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Bnd‘𝑋))
164 0cn 10622 . . . . . . . 8 0 ∈ ℂ
16513ssbnd 35226 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 0 ∈ ℂ) → (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑)))
16612, 164, 165mp2an 691 . . . . . . 7 (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
167163, 166sylib 221 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
168 fzfi 13335 . . . . . . . . 9 (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin
169 xpfi 8773 . . . . . . . . 9 (((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin ∧ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin) → ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin)
170168, 168, 169mp2an 691 . . . . . . . 8 ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin
171 eqid 2798 . . . . . . . . . 10 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) = (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
172 ovex 7168 . . . . . . . . . 10 (𝑟 · (𝑎 + (i · 𝑏))) ∈ V
173171, 172fnmpoi 7750 . . . . . . . . 9 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
174 dffn4 6571 . . . . . . . . 9 ((𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ↔ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
175173, 174mpbi 233 . . . . . . . 8 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
176 fofi 8794 . . . . . . . 8 ((((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin ∧ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin)
177170, 175, 176mp2an 691 . . . . . . 7 ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin
178155, 153elrnmpti 5796 . . . . . . . . . 10 (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ↔ ∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧))
179 elgz 16257 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
180179simp2bi 1143 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
181180ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℤ)
182181zcnd 12076 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℂ)
183182abscld 14788 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ∈ ℝ)
1844ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 ∈ ℂ)
185184abscld 14788 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ∈ ℝ)
186 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ+)
187186adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ+)
188187rpred 12419 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ)
189 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ)
190189adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑑 ∈ ℝ)
191188, 190readdcld 10659 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 + 𝑑) ∈ ℝ)
192191, 187rerpdivcld 12450 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) ∈ ℝ)
193192flcld 13163 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (⌊‘((𝑟 + 𝑑) / 𝑟)) ∈ ℤ)
194193peano2zd 12078 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
195194zred 12075 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℝ)
196 absrele 14660 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
197184, 196syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
198187rpcnd 12421 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℂ)
199198, 184absmuld 14806 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = ((abs‘𝑟) · (abs‘𝑧)))
200187rpge0d 12423 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 0 ≤ 𝑟)
201188, 200absidd 14774 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑟) = 𝑟)
202201oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘𝑟) · (abs‘𝑧)) = (𝑟 · (abs‘𝑧)))
203199, 202eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = (𝑟 · (abs‘𝑧)))
204 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
205 sslin 4161 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
207139a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (abs ∘ − ) ∈ (∞Met‘ℂ))
2086adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
209164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 0 ∈ ℂ)
210186rpxrd 12420 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ*)
211189rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ*)
212 bldisj 23005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅)
2132123exp2 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → (𝑟 ∈ ℝ* → (𝑑 ∈ ℝ* → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))))
214213imp32 422 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ*)) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
215207, 208, 209, 210, 211, 214syl32anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
216 sseq0 4307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅)
217206, 215, 216syl6an 683 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅))
218217necon3ad 3000 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0)))
219218imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))
220 rexadd 12613 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
221188, 190, 220syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
222208adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) ∈ ℂ)
223123cnmetdval 23376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
224222, 164, 223sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
225222subid1d 10975 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧) − 0) = (𝑟 · 𝑧))
226225fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘((𝑟 · 𝑧) − 0)) = (abs‘(𝑟 · 𝑧)))
227224, 226eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘(𝑟 · 𝑧)))
228221, 227breq12d 5043 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) ↔ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
229219, 228mtbid 327 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧)))
230222abscld 14788 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) ∈ ℝ)
231230, 191ltnled 10776 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑) ↔ ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
232229, 231mpbird 260 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑))
233203, 232eqbrtrrd 5054 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑))
234185, 191, 187ltmuldiv2d 12467 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑) ↔ (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟)))
235233, 234mpbid 235 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟))
236 flltp1 13165 . . . . . . . . . . . . . . . . . . . . 21 (((𝑟 + 𝑑) / 𝑟) ∈ ℝ → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
237192, 236syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
238185, 192, 195, 235, 237lttrd 10790 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
239185, 195, 238ltled 10777 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
240183, 185, 195, 197, 239letrd 10786 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
241181zred 12075 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℝ)
242241, 195absled 14782 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
243240, 242mpbid 235 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
244194znegcld 12077 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
245 elfz 12891 . . . . . . . . . . . . . . . . 17 (((ℜ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
246181, 244, 194, 245syl3anc 1368 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
247243, 246mpbird 260 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
248179simp3bi 1144 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
249248ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℤ)
250249zcnd 12076 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℂ)
251250abscld 14788 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ∈ ℝ)
252 absimle 14661 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
253184, 252syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
254251, 185, 195, 253, 239letrd 10786 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
255249zred 12075 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℝ)
256255, 195absled 14782 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
257254, 256mpbid 235 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
258 elfz 12891 . . . . . . . . . . . . . . . . 17 (((ℑ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
259249, 244, 194, 258syl3anc 1368 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
260257, 259mpbird 260 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
261184replimd 14548 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
262261oveq2d 7151 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
263 oveq1 7142 . . . . . . . . . . . . . . . . . 18 (𝑎 = (ℜ‘𝑧) → (𝑎 + (i · 𝑏)) = ((ℜ‘𝑧) + (i · 𝑏)))
264263oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑎 = (ℜ‘𝑧) → (𝑟 · (𝑎 + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))))
265264eqeq2d 2809 . . . . . . . . . . . . . . . 16 (𝑎 = (ℜ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏)))))
266 oveq2 7143 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (ℑ‘𝑧) → (i · 𝑏) = (i · (ℑ‘𝑧)))
267266oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (𝑏 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑏)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
268267oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑏 = (ℑ‘𝑧) → (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
269268eqeq2d 2809 . . . . . . . . . . . . . . . 16 (𝑏 = (ℑ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))))
270265, 269rspc2ev 3583 . . . . . . . . . . . . . . 15 (((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
271247, 260, 262, 270syl3anc 1368 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
272271ex 416 . . . . . . . . . . . . 13 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏)))))
273171, 172elrnmpo 7266 . . . . . . . . . . . . 13 ((𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
274272, 273syl6ibr 255 . . . . . . . . . . . 12 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
275156ineq1d 4138 . . . . . . . . . . . . . 14 (𝑥 = (𝑟 · 𝑧) → ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
276275neeq1d 3046 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ ↔ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅))
277 eleq1 2877 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
278276, 277imbi12d 348 . . . . . . . . . . . 12 (𝑥 = (𝑟 · 𝑧) → ((((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) ↔ ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
279274, 278syl5ibrcom 250 . . . . . . . . . . 11 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
280279rexlimdva 3243 . . . . . . . . . 10 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
281178, 280syl5bi 245 . . . . . . . . 9 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
2822813imp 1108 . . . . . . . 8 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∧ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
283282rabssdv 4002 . . . . . . 7 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
284 ssfi 8722 . . . . . . 7 ((ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
285177, 283, 284sylancr 590 . . . . . 6 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
286167, 285rexlimddv 3250 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
287 iuneq1 4897 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) = 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
288287sseq2d 3947 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
289 rabeq 3431 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} = {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅})
290289eleq1d 2874 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ({𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin ↔ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
291288, 290anbi12d 633 . . . . . 6 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ((𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin) ↔ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
292291rspcev 3571 . . . . 5 ((ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ∧ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29311, 162, 286, 292syl12anc 835 . . . 4 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
294293ralrimiva 3149 . . 3 (𝐷 ∈ (Bnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29513sstotbnd3 35214 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
29612, 15, 295sylancr 590 . . 3 (𝐷 ∈ (Bnd‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
297294, 296mpbird 260 . 2 (𝐷 ∈ (Bnd‘𝑋) → 𝐷 ∈ (TotBnd‘𝑋))
2981, 297impbii 212 1 (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   ciun 4881   class class class wbr 5030  cmpt 5110   × cxp 5517  ran crn 5520  cres 5521  ccom 5523   Fn wfn 6319  ontowfo 6322  cfv 6324  (class class class)co 7135  cmpo 7137  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  cz 11969  +crp 12377   +𝑒 cxad 12493  ...cfz 12885  cfl 13155  cexp 13425  cre 14448  cim 14449  abscabs 14585  ℤ[i]cgz 16255  ∞Metcxmet 20076  Metcmet 20077  ballcbl 20078  TotBndctotbnd 35204  Bndcbnd 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-fz 12886  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-gz 16256  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-totbnd 35206  df-bnd 35217
This theorem is referenced by:  cnpwstotbnd  35235
  Copyright terms: Public domain W3C validator