Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntotbnd Structured version   Visualization version   GIF version

Theorem cntotbnd 34038
Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
cntotbnd.d 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cntotbnd (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))

Proof of Theorem cntotbnd
Dummy variables 𝑎 𝑏 𝑑 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 34031 . 2 (𝐷 ∈ (TotBnd‘𝑋) → 𝐷 ∈ (Bnd‘𝑋))
2 rpcn 12045 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
32adantl 473 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
4 gzcn 15929 . . . . . . . . 9 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
5 mulcl 10277 . . . . . . . . 9 ((𝑟 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑟 · 𝑧) ∈ ℂ)
63, 4, 5syl2an 589 . . . . . . . 8 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
76fmpttd 6579 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)):ℤ[i]⟶ℂ)
87frnd 6232 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
9 cnex 10274 . . . . . . 7 ℂ ∈ V
109elpw2 4988 . . . . . 6 (ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ↔ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
118, 10sylibr 225 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ)
12 cnmet 22868 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
13 cntotbnd.d . . . . . . . . . . . . . . . . . 18 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
1413bnd2lem 34033 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐷 ∈ (Bnd‘𝑋)) → 𝑋 ⊆ ℂ)
1512, 14mpan 681 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (Bnd‘𝑋) → 𝑋 ⊆ ℂ)
1615sselda 3763 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ ℂ)
1716adantrl 707 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ℂ)
1817recld 14233 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘𝑦) ∈ ℝ)
19 simprl 787 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ+)
2018, 19rerpdivcld 12106 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℝ)
21 halfre 11496 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
22 readdcl 10276 . . . . . . . . . . . 12 ((((ℜ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2320, 21, 22sylancl 580 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2423flcld 12812 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
2517imcld 14234 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘𝑦) ∈ ℝ)
2625, 19rerpdivcld 12106 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℝ)
27 readdcl 10276 . . . . . . . . . . . 12 ((((ℑ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2826, 21, 27sylancl 580 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2928flcld 12812 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
30 gzreim 15936 . . . . . . . . . 10 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
3124, 29, 30syl2anc 579 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
32 gzcn 15929 . . . . . . . . . . . . . . 15 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3331, 32syl 17 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3419rpcnd 12077 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℂ)
3519rpne0d 12080 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ≠ 0)
3617, 34, 35divcld 11059 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) ∈ ℂ)
3733, 36subcld 10650 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) ∈ ℂ)
3837abscld 14474 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) ∈ ℝ)
39 1re 10297 . . . . . . . . . . . . 13 1 ∈ ℝ
4039a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 1 ∈ ℝ)
4124zcnd 11735 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
42 ax-icn 10252 . . . . . . . . . . . . . . . . . . . . 21 i ∈ ℂ
4329zcnd 11735 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
44 mulcl 10277 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4542, 43, 44sylancr 581 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4620recnd 10326 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℂ)
4726recnd 10326 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℂ)
48 mulcl 10277 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ ((ℑ‘𝑦) / 𝑟) ∈ ℂ) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
4942, 47, 48sylancr 581 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
5041, 45, 46, 49addsub4d 10697 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
5136replimd 14236 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))))
5219rpred 12075 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ)
5352, 17, 35redivd 14268 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘(𝑦 / 𝑟)) = ((ℜ‘𝑦) / 𝑟))
5452, 17, 35imdivd 14269 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘(𝑦 / 𝑟)) = ((ℑ‘𝑦) / 𝑟))
5554oveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (ℑ‘(𝑦 / 𝑟))) = (i · ((ℑ‘𝑦) / 𝑟)))
5653, 55oveq12d 6864 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5751, 56eqtrd 2799 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5857oveq2d 6862 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))))
5942a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → i ∈ ℂ)
6059, 43, 47subdid 10744 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) = ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟))))
6160oveq2d 6862 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
6250, 58, 613eqtr4d 2809 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))
6362fveq2d 6383 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))))
6463oveq1d 6861 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2))
6524zred 11734 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6665, 20resubcld 10716 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ)
6729zred 11734 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6867, 26resubcld 10716 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ)
69 absreimsq 14331 . . . . . . . . . . . . . . . . 17 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ ∧ ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7066, 68, 69syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7164, 70eqtrd 2799 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7266resqcld 13247 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7368resqcld 13247 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7421resqcli 13161 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) ∈ ℝ
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) ∈ ℝ)
7621a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (1 / 2) ∈ ℝ)
77 absresq 14341 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
7866, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
79 rddif 14379 . . . . . . . . . . . . . . . . . . . 20 (((ℜ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8020, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8166recnd 10326 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℂ)
8281abscld 14474 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ∈ ℝ)
8381absge0d 14482 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))))
84 halfgt0 11498 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
8521, 84elrpii 12036 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) ∈ ℝ+
86 rpge0 12048 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
8785, 86mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (1 / 2))
8882, 76, 83, 87le2sqd 13256 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
8980, 88mpbid 223 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
9078, 89eqbrtrrd 4835 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
91 halfcn 11497 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℂ
9291sqvali 13155 . . . . . . . . . . . . . . . . . . 19 ((1 / 2)↑2) = ((1 / 2) · (1 / 2))
93 halflt1 11500 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
9421, 39, 21, 84ltmul1ii 11210 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) < 1 ↔ ((1 / 2) · (1 / 2)) < (1 · (1 / 2)))
9593, 94mpbi 221 . . . . . . . . . . . . . . . . . . . 20 ((1 / 2) · (1 / 2)) < (1 · (1 / 2))
9691mulid2i 10303 . . . . . . . . . . . . . . . . . . . 20 (1 · (1 / 2)) = (1 / 2)
9795, 96breqtri 4836 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) · (1 / 2)) < (1 / 2)
9892, 97eqbrtri 4832 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) < (1 / 2)
9998a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) < (1 / 2))
10072, 75, 76, 90, 99lelttrd 10453 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) < (1 / 2))
101 absresq 14341 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
10268, 101syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
103 rddif 14379 . . . . . . . . . . . . . . . . . . . 20 (((ℑ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10426, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10568recnd 10326 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
106105abscld 14474 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ∈ ℝ)
107105absge0d 14482 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))
108106, 76, 107, 87le2sqd 13256 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
109104, 108mpbid 223 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
110102, 109eqbrtrrd 4835 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
11173, 75, 76, 110, 99lelttrd 10453 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) < (1 / 2))
11272, 73, 40, 100, 111lt2halvesd 11530 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)) < 1)
11371, 112eqbrtrd 4833 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < 1)
114 sq1 13170 . . . . . . . . . . . . . 14 (1↑2) = 1
115113, 114syl6breqr 4853 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2))
11637absge0d 14482 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))))
117 0le1 10809 . . . . . . . . . . . . . . 15 0 ≤ 1
118117a1i 11 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 1)
11938, 40, 116, 118lt2sqd 13255 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1 ↔ ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2)))
120115, 119mpbird 248 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1)
12138, 40, 19, 120ltmul2dd 12131 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) < (𝑟 · 1))
12234, 33mulcld 10318 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ)
123 eqid 2765 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 22867 . . . . . . . . . . . . 13 (((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
125122, 17, 124syl2anc 579 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
12634, 33, 36subdid 10744 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))))
12717, 34, 35divcan2d 11061 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (𝑦 / 𝑟)) = 𝑦)
128127oveq2d 6862 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
129126, 128eqtrd 2799 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
130129fveq2d 6383 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
13134, 37absmuld 14492 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
132130, 131eqtr3d 2801 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
13319rpge0d 12079 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 𝑟)
13452, 133absidd 14460 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘𝑟) = 𝑟)
135134oveq1d 6861 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
136125, 132, 1353eqtrrd 2804 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦))
13734mulid1d 10315 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · 1) = 𝑟)
138121, 136, 1373brtr3d 4842 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟)
139 cnxmet 22869 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
140139a1i 11 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
141 rpxr 12044 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
142141ad2antrl 719 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ*)
143 elbl2 22488 . . . . . . . . . . 11 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
144140, 142, 122, 17, 143syl22anc 867 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
145138, 144mpbird 248 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
146 oveq2 6854 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑟 · 𝑧) = (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))))
147146oveq1d 6861 . . . . . . . . . . 11 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
148147eleq2d 2830 . . . . . . . . . 10 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)))
149148rspcev 3462 . . . . . . . . 9 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] ∧ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
15031, 145, 149syl2anc 579 . . . . . . . 8 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
151150expr 448 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋 → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
152 eliun 4682 . . . . . . . 8 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
153 ovex 6878 . . . . . . . . . 10 (𝑟 · 𝑧) ∈ V
154153rgenw 3071 . . . . . . . . 9 𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V
155 eqid 2765 . . . . . . . . . 10 (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) = (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))
156 oveq1 6853 . . . . . . . . . . 11 (𝑥 = (𝑟 · 𝑧) → (𝑥(ball‘(abs ∘ − ))𝑟) = ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
157156eleq2d 2830 . . . . . . . . . 10 (𝑥 = (𝑟 · 𝑧) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
158155, 157rexrnmpt 6563 . . . . . . . . 9 (∀𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V → (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
159154, 158ax-mp 5 . . . . . . . 8 (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
160152, 159bitri 266 . . . . . . 7 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
161151, 160syl6ibr 243 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
162161ssrdv 3769 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
163 simpl 474 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Bnd‘𝑋))
164 0cn 10289 . . . . . . . 8 0 ∈ ℂ
16513ssbnd 34030 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 0 ∈ ℂ) → (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑)))
16612, 164, 165mp2an 683 . . . . . . 7 (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
167163, 166sylib 209 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
168 fzfi 12984 . . . . . . . . 9 (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin
169 xpfi 8442 . . . . . . . . 9 (((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin ∧ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin) → ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin)
170168, 168, 169mp2an 683 . . . . . . . 8 ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin
171 eqid 2765 . . . . . . . . . 10 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) = (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
172 ovex 6878 . . . . . . . . . 10 (𝑟 · (𝑎 + (i · 𝑏))) ∈ V
173171, 172fnmpt2i 7444 . . . . . . . . 9 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
174 dffn4 6306 . . . . . . . . 9 ((𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ↔ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
175173, 174mpbi 221 . . . . . . . 8 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
176 fofi 8463 . . . . . . . 8 ((((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin ∧ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin)
177170, 175, 176mp2an 683 . . . . . . 7 ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin
178155, 153elrnmpti 5547 . . . . . . . . . 10 (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ↔ ∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧))
179 elgz 15928 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
180179simp2bi 1176 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
181180ad2antlr 718 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℤ)
182181zcnd 11735 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℂ)
183182abscld 14474 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ∈ ℝ)
1844ad2antlr 718 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 ∈ ℂ)
185184abscld 14474 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ∈ ℝ)
186 simpllr 793 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ+)
187186adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ+)
188187rpred 12075 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ)
189 simplrl 795 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ)
190189adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑑 ∈ ℝ)
191188, 190readdcld 10327 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 + 𝑑) ∈ ℝ)
192191, 187rerpdivcld 12106 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) ∈ ℝ)
193192flcld 12812 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (⌊‘((𝑟 + 𝑑) / 𝑟)) ∈ ℤ)
194193peano2zd 11737 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
195194zred 11734 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℝ)
196 absrele 14347 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
197184, 196syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
198187rpcnd 12077 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℂ)
199198, 184absmuld 14492 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = ((abs‘𝑟) · (abs‘𝑧)))
200187rpge0d 12079 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 0 ≤ 𝑟)
201188, 200absidd 14460 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑟) = 𝑟)
202201oveq1d 6861 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘𝑟) · (abs‘𝑧)) = (𝑟 · (abs‘𝑧)))
203199, 202eqtrd 2799 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = (𝑟 · (abs‘𝑧)))
204 simplrr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
205 sslin 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
207139a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (abs ∘ − ) ∈ (∞Met‘ℂ))
2086adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
209164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 0 ∈ ℂ)
210186rpxrd 12076 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ*)
211189rexrd 10347 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ*)
212 bldisj 22496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅)
2132123exp2 1463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → (𝑟 ∈ ℝ* → (𝑑 ∈ ℝ* → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))))
214213imp32 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ*)) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
215207, 208, 209, 210, 211, 214syl32anc 1497 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
216 sseq0 4139 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅)
217206, 215, 216syl6an 674 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅))
218217necon3ad 2950 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0)))
219218imp 395 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))
220 rexadd 12270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
221188, 190, 220syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
222208adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) ∈ ℂ)
223123cnmetdval 22867 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
224222, 164, 223sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
225222subid1d 10639 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧) − 0) = (𝑟 · 𝑧))
226225fveq2d 6383 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘((𝑟 · 𝑧) − 0)) = (abs‘(𝑟 · 𝑧)))
227224, 226eqtrd 2799 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘(𝑟 · 𝑧)))
228221, 227breq12d 4824 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) ↔ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
229219, 228mtbid 315 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧)))
230222abscld 14474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) ∈ ℝ)
231230, 191ltnled 10442 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑) ↔ ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
232229, 231mpbird 248 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑))
233203, 232eqbrtrrd 4835 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑))
234185, 191, 187ltmuldiv2d 12123 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑) ↔ (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟)))
235233, 234mpbid 223 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟))
236 flltp1 12814 . . . . . . . . . . . . . . . . . . . . 21 (((𝑟 + 𝑑) / 𝑟) ∈ ℝ → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
237192, 236syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
238185, 192, 195, 235, 237lttrd 10456 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
239185, 195, 238ltled 10443 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
240183, 185, 195, 197, 239letrd 10452 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
241181zred 11734 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℝ)
242241, 195absled 14468 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
243240, 242mpbid 223 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
244194znegcld 11736 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
245 elfz 12544 . . . . . . . . . . . . . . . . 17 (((ℜ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
246181, 244, 194, 245syl3anc 1490 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
247243, 246mpbird 248 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
248179simp3bi 1177 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
249248ad2antlr 718 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℤ)
250249zcnd 11735 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℂ)
251250abscld 14474 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ∈ ℝ)
252 absimle 14348 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
253184, 252syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
254251, 185, 195, 253, 239letrd 10452 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
255249zred 11734 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℝ)
256255, 195absled 14468 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
257254, 256mpbid 223 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
258 elfz 12544 . . . . . . . . . . . . . . . . 17 (((ℑ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
259249, 244, 194, 258syl3anc 1490 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
260257, 259mpbird 248 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
261184replimd 14236 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
262261oveq2d 6862 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
263 oveq1 6853 . . . . . . . . . . . . . . . . . 18 (𝑎 = (ℜ‘𝑧) → (𝑎 + (i · 𝑏)) = ((ℜ‘𝑧) + (i · 𝑏)))
264263oveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝑎 = (ℜ‘𝑧) → (𝑟 · (𝑎 + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))))
265264eqeq2d 2775 . . . . . . . . . . . . . . . 16 (𝑎 = (ℜ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏)))))
266 oveq2 6854 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (ℑ‘𝑧) → (i · 𝑏) = (i · (ℑ‘𝑧)))
267266oveq2d 6862 . . . . . . . . . . . . . . . . . 18 (𝑏 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑏)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
268267oveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝑏 = (ℑ‘𝑧) → (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
269268eqeq2d 2775 . . . . . . . . . . . . . . . 16 (𝑏 = (ℑ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))))
270265, 269rspc2ev 3477 . . . . . . . . . . . . . . 15 (((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
271247, 260, 262, 270syl3anc 1490 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
272271ex 401 . . . . . . . . . . . . 13 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏)))))
273171, 172elrnmpt2 6975 . . . . . . . . . . . . 13 ((𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
274272, 273syl6ibr 243 . . . . . . . . . . . 12 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
275156ineq1d 3977 . . . . . . . . . . . . . 14 (𝑥 = (𝑟 · 𝑧) → ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
276275neeq1d 2996 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ ↔ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅))
277 eleq1 2832 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
278276, 277imbi12d 335 . . . . . . . . . . . 12 (𝑥 = (𝑟 · 𝑧) → ((((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) ↔ ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
279274, 278syl5ibrcom 238 . . . . . . . . . . 11 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
280279rexlimdva 3178 . . . . . . . . . 10 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
281178, 280syl5bi 233 . . . . . . . . 9 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
2822813imp 1137 . . . . . . . 8 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∧ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
283282rabssdv 3844 . . . . . . 7 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
284 ssfi 8391 . . . . . . 7 ((ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
285177, 283, 284sylancr 581 . . . . . 6 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
286167, 285rexlimddv 3182 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
287 iuneq1 4692 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) = 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
288287sseq2d 3795 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
289 rabeq 3341 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} = {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅})
290289eleq1d 2829 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ({𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin ↔ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
291288, 290anbi12d 624 . . . . . 6 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ((𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin) ↔ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
292291rspcev 3462 . . . . 5 ((ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ∧ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29311, 162, 286, 292syl12anc 865 . . . 4 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
294293ralrimiva 3113 . . 3 (𝐷 ∈ (Bnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29513sstotbnd3 34018 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
29612, 15, 295sylancr 581 . . 3 (𝐷 ∈ (Bnd‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
297294, 296mpbird 248 . 2 (𝐷 ∈ (Bnd‘𝑋) → 𝐷 ∈ (TotBnd‘𝑋))
2981, 297impbii 200 1 (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cin 3733  wss 3734  c0 4081  𝒫 cpw 4317   ciun 4678   class class class wbr 4811  cmpt 4890   × cxp 5277  ran crn 5280  cres 5281  ccom 5283   Fn wfn 6065  ontowfo 6068  cfv 6070  (class class class)co 6846  cmpt2 6848  Fincfn 8164  cc 10191  cr 10192  0cc0 10193  1c1 10194  ici 10195   + caddc 10196   · cmul 10198  *cxr 10331   < clt 10332  cle 10333  cmin 10524  -cneg 10525   / cdiv 10942  2c2 11331  cz 11628  +crp 12033   +𝑒 cxad 12149  ...cfz 12538  cfl 12804  cexp 13072  cre 14136  cim 14137  abscabs 14273  ℤ[i]cgz 15926  ∞Metcxmet 20018  Metcmet 20019  ballcbl 20020  TotBndctotbnd 34008  Bndcbnd 34009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-ec 7953  df-map 8066  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-fz 12539  df-fl 12806  df-seq 13014  df-exp 13073  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-gz 15927  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-totbnd 34010  df-bnd 34021
This theorem is referenced by:  cnpwstotbnd  34039
  Copyright terms: Public domain W3C validator