Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntotbnd Structured version   Visualization version   GIF version

Theorem cntotbnd 37131
Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
cntotbnd.d 𝐷 = ((abs ∘ βˆ’ ) β†Ύ (𝑋 Γ— 𝑋))
Assertion
Ref Expression
cntotbnd (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ 𝐷 ∈ (Bndβ€˜π‘‹))

Proof of Theorem cntotbnd
Dummy variables π‘Ž 𝑏 𝑑 π‘Ÿ π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 37124 . 2 (𝐷 ∈ (TotBndβ€˜π‘‹) β†’ 𝐷 ∈ (Bndβ€˜π‘‹))
2 rpcn 12991 . . . . . . . . . 10 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ β„‚)
32adantl 481 . . . . . . . . 9 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ π‘Ÿ ∈ β„‚)
4 gzcn 16872 . . . . . . . . 9 (𝑧 ∈ β„€[i] β†’ 𝑧 ∈ β„‚)
5 mulcl 11200 . . . . . . . . 9 ((π‘Ÿ ∈ β„‚ ∧ 𝑧 ∈ β„‚) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
63, 4, 5syl2an 595 . . . . . . . 8 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑧 ∈ β„€[i]) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
76fmpttd 7116 . . . . . . 7 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)):β„€[i]βŸΆβ„‚)
87frnd 6725 . . . . . 6 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) βŠ† β„‚)
9 cnex 11197 . . . . . . 7 β„‚ ∈ V
109elpw2 5345 . . . . . 6 (ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∈ 𝒫 β„‚ ↔ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) βŠ† β„‚)
118, 10sylibr 233 . . . . 5 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∈ 𝒫 β„‚)
12 cnmet 24609 . . . . . . . . . . . . . . . . 17 (abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚)
13 cntotbnd.d . . . . . . . . . . . . . . . . . 18 𝐷 = ((abs ∘ βˆ’ ) β†Ύ (𝑋 Γ— 𝑋))
1413bnd2lem 37126 . . . . . . . . . . . . . . . . 17 (((abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚) ∧ 𝐷 ∈ (Bndβ€˜π‘‹)) β†’ 𝑋 βŠ† β„‚)
1512, 14mpan 687 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ 𝑋 βŠ† β„‚)
1615sselda 3982 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) β†’ 𝑦 ∈ β„‚)
1716adantrl 713 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 𝑦 ∈ β„‚)
1817recld 15148 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„œβ€˜π‘¦) ∈ ℝ)
19 simprl 768 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ ℝ+)
2018, 19rerpdivcld 13054 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„œβ€˜π‘¦) / π‘Ÿ) ∈ ℝ)
21 halfre 12433 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
22 readdcl 11199 . . . . . . . . . . . 12 ((((β„œβ€˜π‘¦) / π‘Ÿ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) β†’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2320, 21, 22sylancl 585 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2423flcld 13770 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€)
2517imcld 15149 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„‘β€˜π‘¦) ∈ ℝ)
2625, 19rerpdivcld 13054 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„‘β€˜π‘¦) / π‘Ÿ) ∈ ℝ)
27 readdcl 11199 . . . . . . . . . . . 12 ((((β„‘β€˜π‘¦) / π‘Ÿ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) β†’ (((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2826, 21, 27sylancl 585 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2928flcld 13770 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€)
30 gzreim 16879 . . . . . . . . . 10 (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€ ∧ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i])
3124, 29, 30syl2anc 583 . . . . . . . . 9 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i])
32 gzcn 16872 . . . . . . . . . . . . . . 15 (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i] β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„‚)
3331, 32syl 17 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„‚)
3419rpcnd 13025 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ β„‚)
3519rpne0d 13028 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ β‰  0)
3617, 34, 35divcld 11997 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 / π‘Ÿ) ∈ β„‚)
3733, 36subcld 11578 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)) ∈ β„‚)
3837abscld 15390 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) ∈ ℝ)
39 1re 11221 . . . . . . . . . . . . 13 1 ∈ ℝ
4039a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 1 ∈ ℝ)
4124zcnd 12674 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„‚)
42 ax-icn 11175 . . . . . . . . . . . . . . . . . . . . 21 i ∈ β„‚
4329zcnd 12674 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„‚)
44 mulcl 11200 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ β„‚ ∧ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„‚) β†’ (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) ∈ β„‚)
4542, 43, 44sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) ∈ β„‚)
4620recnd 11249 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„œβ€˜π‘¦) / π‘Ÿ) ∈ β„‚)
4726recnd 11249 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„‘β€˜π‘¦) / π‘Ÿ) ∈ β„‚)
48 mulcl 11200 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ β„‚ ∧ ((β„‘β€˜π‘¦) / π‘Ÿ) ∈ β„‚) β†’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
4942, 47, 48sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
5041, 45, 46, 49addsub4d 11625 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + ((i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) βˆ’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))))
5136replimd 15151 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 / π‘Ÿ) = ((β„œβ€˜(𝑦 / π‘Ÿ)) + (i Β· (β„‘β€˜(𝑦 / π‘Ÿ)))))
5219rpred 13023 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ ℝ)
5352, 17, 35redivd 15183 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„œβ€˜(𝑦 / π‘Ÿ)) = ((β„œβ€˜π‘¦) / π‘Ÿ))
5452, 17, 35imdivd 15184 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„‘β€˜(𝑦 / π‘Ÿ)) = ((β„‘β€˜π‘¦) / π‘Ÿ))
5554oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· (β„‘β€˜(𝑦 / π‘Ÿ))) = (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))
5653, 55oveq12d 7430 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„œβ€˜(𝑦 / π‘Ÿ)) + (i Β· (β„‘β€˜(𝑦 / π‘Ÿ)))) = (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ))))
5751, 56eqtrd 2771 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 / π‘Ÿ) = (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ))))
5857oveq2d 7428 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))))
5942a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ i ∈ β„‚)
6059, 43, 47subdid 11677 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) = ((i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) βˆ’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ))))
6160oveq2d 7428 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + ((i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) βˆ’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))))
6250, 58, 613eqtr4d 2781 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))
6362fveq2d 6895 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) = (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))))))
6463oveq1d 7427 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) = ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))↑2))
6524zred 12673 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ ℝ)
6665, 20resubcld 11649 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ ℝ)
6729zred 12673 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ ℝ)
6867, 26resubcld 11649 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ ℝ)
69 absreimsq 15246 . . . . . . . . . . . . . . . . 17 ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ ℝ ∧ ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ ℝ) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))↑2) = ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)))
7066, 68, 69syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))↑2) = ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)))
7164, 70eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) = ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)))
7266resqcld 14097 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) ∈ ℝ)
7368resqcld 14097 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2) ∈ ℝ)
7421resqcli 14157 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) ∈ ℝ
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((1 / 2)↑2) ∈ ℝ)
7621a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (1 / 2) ∈ ℝ)
77 absresq 15256 . . . . . . . . . . . . . . . . . . 19 (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ ℝ β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2))
7866, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2))
79 rddif 15294 . . . . . . . . . . . . . . . . . . . 20 (((β„œβ€˜π‘¦) / π‘Ÿ) ∈ ℝ β†’ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
8020, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
8166recnd 11249 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
8281abscld 15390 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ∈ ℝ)
8381absge0d 15398 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))))
84 halfgt0 12435 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
8521, 84elrpii 12984 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) ∈ ℝ+
86 rpge0 12994 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) ∈ ℝ+ β†’ 0 ≀ (1 / 2))
8785, 86mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (1 / 2))
8882, 76, 83, 87le2sqd 14227 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2) ↔ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2)))
8980, 88mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2))
9078, 89eqbrtrrd 5172 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) ≀ ((1 / 2)↑2))
91 halfcn 12434 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ β„‚
9291sqvali 14151 . . . . . . . . . . . . . . . . . . 19 ((1 / 2)↑2) = ((1 / 2) Β· (1 / 2))
93 halflt1 12437 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
9421, 39, 21, 84ltmul1ii 12149 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) < 1 ↔ ((1 / 2) Β· (1 / 2)) < (1 Β· (1 / 2)))
9593, 94mpbi 229 . . . . . . . . . . . . . . . . . . . 20 ((1 / 2) Β· (1 / 2)) < (1 Β· (1 / 2))
9691mullidi 11226 . . . . . . . . . . . . . . . . . . . 20 (1 Β· (1 / 2)) = (1 / 2)
9795, 96breqtri 5173 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) Β· (1 / 2)) < (1 / 2)
9892, 97eqbrtri 5169 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) < (1 / 2)
9998a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((1 / 2)↑2) < (1 / 2))
10072, 75, 76, 90, 99lelttrd 11379 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) < (1 / 2))
101 absresq 15256 . . . . . . . . . . . . . . . . . . 19 (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ ℝ β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2))
10268, 101syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2))
103 rddif 15294 . . . . . . . . . . . . . . . . . . . 20 (((β„‘β€˜π‘¦) / π‘Ÿ) ∈ ℝ β†’ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
10426, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
10568recnd 11249 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
106105abscld 15390 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ∈ ℝ)
107105absge0d 15398 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))))
108106, 76, 107, 87le2sqd 14227 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2) ↔ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2)))
109104, 108mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2))
110102, 109eqbrtrrd 5172 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2) ≀ ((1 / 2)↑2))
11173, 75, 76, 110, 99lelttrd 11379 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2) < (1 / 2))
11272, 73, 40, 100, 111lt2halvesd 12467 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)) < 1)
11371, 112eqbrtrd 5170 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) < 1)
114 sq1 14166 . . . . . . . . . . . . . 14 (1↑2) = 1
115113, 114breqtrrdi 5190 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) < (1↑2))
11637absge0d 15398 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))))
117 0le1 11744 . . . . . . . . . . . . . . 15 0 ≀ 1
118117a1i 11 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ 1)
11938, 40, 116, 118lt2sqd 14226 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) < 1 ↔ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) < (1↑2)))
120115, 119mpbird 257 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) < 1)
12138, 40, 19, 120ltmul2dd 13079 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) < (π‘Ÿ Β· 1))
12234, 33mulcld 11241 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) ∈ β„‚)
123 eqid 2731 . . . . . . . . . . . . . 14 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
124123cnmetdval 24608 . . . . . . . . . . . . 13 (((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) = (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)))
125122, 17, 124syl2anc 583 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) = (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)))
12634, 33, 36subdid 11677 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ (π‘Ÿ Β· (𝑦 / π‘Ÿ))))
12717, 34, 35divcan2d 11999 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (𝑦 / π‘Ÿ)) = 𝑦)
128127oveq2d 7428 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ (π‘Ÿ Β· (𝑦 / π‘Ÿ))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦))
129126, 128eqtrd 2771 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦))
130129fveq2d 6895 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)))
13134, 37absmuld 15408 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = ((absβ€˜π‘Ÿ) Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))))
132130, 131eqtr3d 2773 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)) = ((absβ€˜π‘Ÿ) Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))))
13319rpge0d 13027 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ π‘Ÿ)
13452, 133absidd 15376 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜π‘Ÿ) = π‘Ÿ)
135134oveq1d 7427 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜π‘Ÿ) Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = (π‘Ÿ Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))))
136125, 132, 1353eqtrrd 2776 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦))
13734mulridd 11238 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· 1) = π‘Ÿ)
138121, 136, 1373brtr3d 5179 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) < π‘Ÿ)
139 cnxmet 24610 . . . . . . . . . . . 12 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
140139a1i 11 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚))
141 rpxr 12990 . . . . . . . . . . . 12 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ*)
142141ad2antrl 725 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ ℝ*)
143 elbl2 24217 . . . . . . . . . . 11 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘Ÿ ∈ ℝ*) ∧ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) ∈ β„‚ ∧ 𝑦 ∈ β„‚)) β†’ (𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) < π‘Ÿ))
144140, 142, 122, 17, 143syl22anc 836 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) < π‘Ÿ))
145138, 144mpbird 257 . . . . . . . . 9 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
146 oveq2 7420 . . . . . . . . . . . 12 (𝑧 = ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) β†’ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))))
147146oveq1d 7427 . . . . . . . . . . 11 (𝑧 = ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) β†’ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
148147eleq2d 2818 . . . . . . . . . 10 (𝑧 = ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) β†’ (𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ 𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
149148rspcev 3612 . . . . . . . . 9 ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i] ∧ 𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
15031, 145, 149syl2anc 583 . . . . . . . 8 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
151150expr 456 . . . . . . 7 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ (𝑦 ∈ 𝑋 β†’ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
152 eliun 5001 . . . . . . . 8 (𝑦 ∈ βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
153 ovex 7445 . . . . . . . . . 10 (π‘Ÿ Β· 𝑧) ∈ V
154153rgenw 3064 . . . . . . . . 9 βˆ€π‘§ ∈ β„€[i] (π‘Ÿ Β· 𝑧) ∈ V
155 eqid 2731 . . . . . . . . . 10 (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) = (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))
156 oveq1 7419 . . . . . . . . . . 11 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
157156eleq2d 2818 . . . . . . . . . 10 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
158155, 157rexrnmptw 7096 . . . . . . . . 9 (βˆ€π‘§ ∈ β„€[i] (π‘Ÿ Β· 𝑧) ∈ V β†’ (βˆƒπ‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
159154, 158ax-mp 5 . . . . . . . 8 (βˆƒπ‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
160152, 159bitri 275 . . . . . . 7 (𝑦 ∈ βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
161151, 160imbitrrdi 251 . . . . . 6 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ (𝑦 ∈ 𝑋 β†’ 𝑦 ∈ βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
162161ssrdv 3988 . . . . 5 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ 𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
163 simpl 482 . . . . . . 7 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ 𝐷 ∈ (Bndβ€˜π‘‹))
164 0cn 11213 . . . . . . . 8 0 ∈ β„‚
16513ssbnd 37123 . . . . . . . 8 (((abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚) ∧ 0 ∈ β„‚) β†’ (𝐷 ∈ (Bndβ€˜π‘‹) ↔ βˆƒπ‘‘ ∈ ℝ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)))
16612, 164, 165mp2an 689 . . . . . . 7 (𝐷 ∈ (Bndβ€˜π‘‹) ↔ βˆƒπ‘‘ ∈ ℝ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))
167163, 166sylib 217 . . . . . 6 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘‘ ∈ ℝ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))
168 fzfi 13944 . . . . . . . . 9 (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∈ Fin
169 xpfi 9323 . . . . . . . . 9 (((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∈ Fin ∧ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∈ Fin) β†’ ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ∈ Fin)
170168, 168, 169mp2an 689 . . . . . . . 8 ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ∈ Fin
171 eqid 2731 . . . . . . . . . 10 (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) = (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
172 ovex 7445 . . . . . . . . . 10 (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))) ∈ V
173171, 172fnmpoi 8060 . . . . . . . . 9 (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) Fn ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
174 dffn4 6811 . . . . . . . . 9 ((π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) Fn ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ↔ (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))):((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))–ontoβ†’ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
175173, 174mpbi 229 . . . . . . . 8 (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))):((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))–ontoβ†’ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
176 fofi 9344 . . . . . . . 8 ((((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ∈ Fin ∧ (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))):((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))–ontoβ†’ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))) β†’ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ∈ Fin)
177170, 175, 176mp2an 689 . . . . . . 7 ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ∈ Fin
178155, 153elrnmpti 5959 . . . . . . . . . 10 (π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ↔ βˆƒπ‘§ ∈ β„€[i] π‘₯ = (π‘Ÿ Β· 𝑧))
179 elgz 16871 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ β„€[i] ↔ (𝑧 ∈ β„‚ ∧ (β„œβ€˜π‘§) ∈ β„€ ∧ (β„‘β€˜π‘§) ∈ β„€))
180179simp2bi 1145 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ β„€[i] β†’ (β„œβ€˜π‘§) ∈ β„€)
181180ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ β„€)
182181zcnd 12674 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ β„‚)
183182abscld 15390 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„œβ€˜π‘§)) ∈ ℝ)
1844ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 𝑧 ∈ β„‚)
185184abscld 15390 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) ∈ ℝ)
186 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ π‘Ÿ ∈ ℝ+)
187186adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘Ÿ ∈ ℝ+)
188187rpred 13023 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘Ÿ ∈ ℝ)
189 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 𝑑 ∈ ℝ)
190189adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 𝑑 ∈ ℝ)
191188, 190readdcld 11250 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ + 𝑑) ∈ ℝ)
192191, 187rerpdivcld 13054 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ + 𝑑) / π‘Ÿ) ∈ ℝ)
193192flcld 13770 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) ∈ β„€)
194193peano2zd 12676 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€)
195194zred 12673 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ ℝ)
196 absrele 15262 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ β„‚ β†’ (absβ€˜(β„œβ€˜π‘§)) ≀ (absβ€˜π‘§))
197184, 196syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„œβ€˜π‘§)) ≀ (absβ€˜π‘§))
198187rpcnd 13025 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘Ÿ ∈ β„‚)
199198, 184absmuld 15408 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) = ((absβ€˜π‘Ÿ) Β· (absβ€˜π‘§)))
200187rpge0d 13027 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 0 ≀ π‘Ÿ)
201188, 200absidd 15376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘Ÿ) = π‘Ÿ)
202201oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜π‘Ÿ) Β· (absβ€˜π‘§)) = (π‘Ÿ Β· (absβ€˜π‘§)))
203199, 202eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) = (π‘Ÿ Β· (absβ€˜π‘§)))
204 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))
205 sslin 4234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) βŠ† (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) βŠ† (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)))
207139a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚))
2086adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
209164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 0 ∈ β„‚)
210186rpxrd 13024 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ π‘Ÿ ∈ ℝ*)
211189rexrd 11271 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 𝑑 ∈ ℝ*)
212 bldisj 24225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ (π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) ∧ (π‘Ÿ ∈ ℝ* ∧ 𝑑 ∈ ℝ* ∧ (π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0))) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…)
2132123exp2 1353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ (π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) β†’ (π‘Ÿ ∈ ℝ* β†’ (𝑑 ∈ ℝ* β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…))))
214213imp32 418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ (π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) ∧ (π‘Ÿ ∈ ℝ* ∧ 𝑑 ∈ ℝ*)) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…))
215207, 208, 209, 210, 211, 214syl32anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…))
216 sseq0 4399 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) βŠ† (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = βˆ…)
217206, 215, 216syl6an 681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = βˆ…))
218217necon3ad 2952 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ Β¬ (π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0)))
219218imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ Β¬ (π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0))
220 rexadd 13218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘Ÿ ∈ ℝ ∧ 𝑑 ∈ ℝ) β†’ (π‘Ÿ +𝑒 𝑑) = (π‘Ÿ + 𝑑))
221188, 190, 220syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ +𝑒 𝑑) = (π‘Ÿ + 𝑑))
222208adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
223123cnmetdval 24608 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) β†’ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) = (absβ€˜((π‘Ÿ Β· 𝑧) βˆ’ 0)))
224222, 164, 223sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) = (absβ€˜((π‘Ÿ Β· 𝑧) βˆ’ 0)))
225222subid1d 11567 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· 𝑧) βˆ’ 0) = (π‘Ÿ Β· 𝑧))
226225fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜((π‘Ÿ Β· 𝑧) βˆ’ 0)) = (absβ€˜(π‘Ÿ Β· 𝑧)))
227224, 226eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) = (absβ€˜(π‘Ÿ Β· 𝑧)))
228221, 227breq12d 5161 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) ↔ (π‘Ÿ + 𝑑) ≀ (absβ€˜(π‘Ÿ Β· 𝑧))))
229219, 228mtbid 324 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ Β¬ (π‘Ÿ + 𝑑) ≀ (absβ€˜(π‘Ÿ Β· 𝑧)))
230222abscld 15390 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) ∈ ℝ)
231230, 191ltnled 11368 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜(π‘Ÿ Β· 𝑧)) < (π‘Ÿ + 𝑑) ↔ Β¬ (π‘Ÿ + 𝑑) ≀ (absβ€˜(π‘Ÿ Β· 𝑧))))
232229, 231mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) < (π‘Ÿ + 𝑑))
233203, 232eqbrtrrd 5172 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ Β· (absβ€˜π‘§)) < (π‘Ÿ + 𝑑))
234185, 191, 187ltmuldiv2d 13071 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· (absβ€˜π‘§)) < (π‘Ÿ + 𝑑) ↔ (absβ€˜π‘§) < ((π‘Ÿ + 𝑑) / π‘Ÿ)))
235233, 234mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) < ((π‘Ÿ + 𝑑) / π‘Ÿ))
236 flltp1 13772 . . . . . . . . . . . . . . . . . . . . 21 (((π‘Ÿ + 𝑑) / π‘Ÿ) ∈ ℝ β†’ ((π‘Ÿ + 𝑑) / π‘Ÿ) < ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
237192, 236syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ + 𝑑) / π‘Ÿ) < ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
238185, 192, 195, 235, 237lttrd 11382 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) < ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
239185, 195, 238ltled 11369 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
240183, 185, 195, 197, 239letrd 11378 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„œβ€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
241181zred 12673 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ ℝ)
242241, 195absled 15384 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜(β„œβ€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
243240, 242mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
244194znegcld 12675 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ -((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€)
245 elfz 13497 . . . . . . . . . . . . . . . . 17 (((β„œβ€˜π‘§) ∈ β„€ ∧ -((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€ ∧ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€) β†’ ((β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
246181, 244, 194, 245syl3anc 1370 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
247243, 246mpbird 257 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
248179simp3bi 1146 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ β„€[i] β†’ (β„‘β€˜π‘§) ∈ β„€)
249248ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ β„€)
250249zcnd 12674 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ β„‚)
251250abscld 15390 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„‘β€˜π‘§)) ∈ ℝ)
252 absimle 15263 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ β„‚ β†’ (absβ€˜(β„‘β€˜π‘§)) ≀ (absβ€˜π‘§))
253184, 252syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„‘β€˜π‘§)) ≀ (absβ€˜π‘§))
254251, 185, 195, 253, 239letrd 11378 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„‘β€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
255249zred 12673 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ ℝ)
256255, 195absled 15384 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜(β„‘β€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
257254, 256mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
258 elfz 13497 . . . . . . . . . . . . . . . . 17 (((β„‘β€˜π‘§) ∈ β„€ ∧ -((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€ ∧ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€) β†’ ((β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
259249, 244, 194, 258syl3anc 1370 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
260257, 259mpbird 257 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
261184replimd 15151 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 𝑧 = ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))
262261oveq2d 7428 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§)))))
263 oveq1 7419 . . . . . . . . . . . . . . . . . 18 (π‘Ž = (β„œβ€˜π‘§) β†’ (π‘Ž + (i Β· 𝑏)) = ((β„œβ€˜π‘§) + (i Β· 𝑏)))
264263oveq2d 7428 . . . . . . . . . . . . . . . . 17 (π‘Ž = (β„œβ€˜π‘§) β†’ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏))))
265264eqeq2d 2742 . . . . . . . . . . . . . . . 16 (π‘Ž = (β„œβ€˜π‘§) β†’ ((π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))) ↔ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏)))))
266 oveq2 7420 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (β„‘β€˜π‘§) β†’ (i Β· 𝑏) = (i Β· (β„‘β€˜π‘§)))
267266oveq2d 7428 . . . . . . . . . . . . . . . . . 18 (𝑏 = (β„‘β€˜π‘§) β†’ ((β„œβ€˜π‘§) + (i Β· 𝑏)) = ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))
268267oveq2d 7428 . . . . . . . . . . . . . . . . 17 (𝑏 = (β„‘β€˜π‘§) β†’ (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏))) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§)))))
269268eqeq2d 2742 . . . . . . . . . . . . . . . 16 (𝑏 = (β„‘β€˜π‘§) β†’ ((π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏))) ↔ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))))
270265, 269rspc2ev 3624 . . . . . . . . . . . . . . 15 (((β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∧ (β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∧ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))) β†’ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
271247, 260, 262, 270syl3anc 1370 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
272271ex 412 . . . . . . . . . . . . 13 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
273171, 172elrnmpo 7548 . . . . . . . . . . . . 13 ((π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ↔ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
274272, 273imbitrrdi 251 . . . . . . . . . . . 12 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ (π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))))
275156ineq1d 4211 . . . . . . . . . . . . . 14 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋))
276275neeq1d 2999 . . . . . . . . . . . . 13 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… ↔ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…))
277 eleq1 2820 . . . . . . . . . . . . 13 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ↔ (π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))))
278276, 277imbi12d 344 . . . . . . . . . . . 12 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ ((((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))) ↔ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ (π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
279274, 278syl5ibrcom 246 . . . . . . . . . . 11 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
280279rexlimdva 3154 . . . . . . . . . 10 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ (βˆƒπ‘§ ∈ β„€[i] π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
281178, 280biimtrid 241 . . . . . . . . 9 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ (π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
2822813imp 1110 . . . . . . . 8 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∧ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
283282rabssdv 4072 . . . . . . 7 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} βŠ† ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
284 ssfi 9179 . . . . . . 7 ((ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ∈ Fin ∧ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} βŠ† ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)
285177, 283, 284sylancr 586 . . . . . 6 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)
286167, 285rexlimddv 3160 . . . . 5 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)
287 iuneq1 5013 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
288287sseq2d 4014 . . . . . . 7 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ (𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ 𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
289 rabeq 3445 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} = {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…})
290289eleq1d 2817 . . . . . . 7 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ ({π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin ↔ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
291288, 290anbi12d 630 . . . . . 6 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ ((𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin) ↔ (𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)))
292291rspcev 3612 . . . . 5 ((ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∈ 𝒫 β„‚ ∧ (𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)) β†’ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
29311, 162, 286, 292syl12anc 834 . . . 4 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
294293ralrimiva 3145 . . 3 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
29513sstotbnd3 37111 . . . 4 (((abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚) ∧ 𝑋 βŠ† β„‚) β†’ (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)))
29612, 15, 295sylancr 586 . . 3 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)))
297294, 296mpbird 257 . 2 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ 𝐷 ∈ (TotBndβ€˜π‘‹))
2981, 297impbii 208 1 (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ 𝐷 ∈ (Bndβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  βˆƒwrex 3069  {crab 3431  Vcvv 3473   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  βˆͺ ciun 4997   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  ran crn 5677   β†Ύ cres 5678   ∘ ccom 5680   Fn wfn 6538  β€“ontoβ†’wfo 6541  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  Fincfn 8945  β„‚cc 11114  β„cr 11115  0cc0 11116  1c1 11117  ici 11118   + caddc 11119   Β· cmul 11121  β„*cxr 11254   < clt 11255   ≀ cle 11256   βˆ’ cmin 11451  -cneg 11452   / cdiv 11878  2c2 12274  β„€cz 12565  β„+crp 12981   +𝑒 cxad 13097  ...cfz 13491  βŒŠcfl 13762  β†‘cexp 14034  β„œcre 15051  β„‘cim 15052  abscabs 15188  β„€[i]cgz 16869  βˆžMetcxmet 21219  Metcmet 21220  ballcbl 21221  TotBndctotbnd 37101  Bndcbnd 37102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-ec 8711  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-fz 13492  df-fl 13764  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-gz 16870  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-totbnd 37103  df-bnd 37114
This theorem is referenced by:  cnpwstotbnd  37132
  Copyright terms: Public domain W3C validator