Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntotbnd Structured version   Visualization version   GIF version

Theorem cntotbnd 36652
Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
cntotbnd.d 𝐷 = ((abs ∘ βˆ’ ) β†Ύ (𝑋 Γ— 𝑋))
Assertion
Ref Expression
cntotbnd (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ 𝐷 ∈ (Bndβ€˜π‘‹))

Proof of Theorem cntotbnd
Dummy variables π‘Ž 𝑏 𝑑 π‘Ÿ π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 36645 . 2 (𝐷 ∈ (TotBndβ€˜π‘‹) β†’ 𝐷 ∈ (Bndβ€˜π‘‹))
2 rpcn 12980 . . . . . . . . . 10 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ β„‚)
32adantl 482 . . . . . . . . 9 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ π‘Ÿ ∈ β„‚)
4 gzcn 16861 . . . . . . . . 9 (𝑧 ∈ β„€[i] β†’ 𝑧 ∈ β„‚)
5 mulcl 11190 . . . . . . . . 9 ((π‘Ÿ ∈ β„‚ ∧ 𝑧 ∈ β„‚) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
63, 4, 5syl2an 596 . . . . . . . 8 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑧 ∈ β„€[i]) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
76fmpttd 7111 . . . . . . 7 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)):β„€[i]βŸΆβ„‚)
87frnd 6722 . . . . . 6 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) βŠ† β„‚)
9 cnex 11187 . . . . . . 7 β„‚ ∈ V
109elpw2 5344 . . . . . 6 (ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∈ 𝒫 β„‚ ↔ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) βŠ† β„‚)
118, 10sylibr 233 . . . . 5 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∈ 𝒫 β„‚)
12 cnmet 24279 . . . . . . . . . . . . . . . . 17 (abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚)
13 cntotbnd.d . . . . . . . . . . . . . . . . . 18 𝐷 = ((abs ∘ βˆ’ ) β†Ύ (𝑋 Γ— 𝑋))
1413bnd2lem 36647 . . . . . . . . . . . . . . . . 17 (((abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚) ∧ 𝐷 ∈ (Bndβ€˜π‘‹)) β†’ 𝑋 βŠ† β„‚)
1512, 14mpan 688 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ 𝑋 βŠ† β„‚)
1615sselda 3981 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) β†’ 𝑦 ∈ β„‚)
1716adantrl 714 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 𝑦 ∈ β„‚)
1817recld 15137 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„œβ€˜π‘¦) ∈ ℝ)
19 simprl 769 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ ℝ+)
2018, 19rerpdivcld 13043 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„œβ€˜π‘¦) / π‘Ÿ) ∈ ℝ)
21 halfre 12422 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
22 readdcl 11189 . . . . . . . . . . . 12 ((((β„œβ€˜π‘¦) / π‘Ÿ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) β†’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2320, 21, 22sylancl 586 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2423flcld 13759 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€)
2517imcld 15138 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„‘β€˜π‘¦) ∈ ℝ)
2625, 19rerpdivcld 13043 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„‘β€˜π‘¦) / π‘Ÿ) ∈ ℝ)
27 readdcl 11189 . . . . . . . . . . . 12 ((((β„‘β€˜π‘¦) / π‘Ÿ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) β†’ (((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2826, 21, 27sylancl 586 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)) ∈ ℝ)
2928flcld 13759 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€)
30 gzreim 16868 . . . . . . . . . 10 (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€ ∧ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„€) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i])
3124, 29, 30syl2anc 584 . . . . . . . . 9 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i])
32 gzcn 16861 . . . . . . . . . . . . . . 15 (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i] β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„‚)
3331, 32syl 17 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„‚)
3419rpcnd 13014 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ β„‚)
3519rpne0d 13017 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ β‰  0)
3617, 34, 35divcld 11986 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 / π‘Ÿ) ∈ β„‚)
3733, 36subcld 11567 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)) ∈ β„‚)
3837abscld 15379 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) ∈ ℝ)
39 1re 11210 . . . . . . . . . . . . 13 1 ∈ ℝ
4039a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 1 ∈ ℝ)
4124zcnd 12663 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„‚)
42 ax-icn 11165 . . . . . . . . . . . . . . . . . . . . 21 i ∈ β„‚
4329zcnd 12663 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„‚)
44 mulcl 11190 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ β„‚ ∧ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ β„‚) β†’ (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) ∈ β„‚)
4542, 43, 44sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) ∈ β„‚)
4620recnd 11238 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„œβ€˜π‘¦) / π‘Ÿ) ∈ β„‚)
4726recnd 11238 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„‘β€˜π‘¦) / π‘Ÿ) ∈ β„‚)
48 mulcl 11190 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ β„‚ ∧ ((β„‘β€˜π‘¦) / π‘Ÿ) ∈ β„‚) β†’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
4942, 47, 48sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
5041, 45, 46, 49addsub4d 11614 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + ((i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) βˆ’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))))
5136replimd 15140 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 / π‘Ÿ) = ((β„œβ€˜(𝑦 / π‘Ÿ)) + (i Β· (β„‘β€˜(𝑦 / π‘Ÿ)))))
5219rpred 13012 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ ℝ)
5352, 17, 35redivd 15172 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„œβ€˜(𝑦 / π‘Ÿ)) = ((β„œβ€˜π‘¦) / π‘Ÿ))
5452, 17, 35imdivd 15173 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (β„‘β€˜(𝑦 / π‘Ÿ)) = ((β„‘β€˜π‘¦) / π‘Ÿ))
5554oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· (β„‘β€˜(𝑦 / π‘Ÿ))) = (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))
5653, 55oveq12d 7423 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((β„œβ€˜(𝑦 / π‘Ÿ)) + (i Β· (β„‘β€˜(𝑦 / π‘Ÿ)))) = (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ))))
5751, 56eqtrd 2772 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 / π‘Ÿ) = (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ))))
5857oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (((β„œβ€˜π‘¦) / π‘Ÿ) + (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))))
5942a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ i ∈ β„‚)
6059, 43, 47subdid 11666 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) = ((i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) βˆ’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ))))
6160oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + ((i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))) βˆ’ (i Β· ((β„‘β€˜π‘¦) / π‘Ÿ)))))
6250, 58, 613eqtr4d 2782 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))
6362fveq2d 6892 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) = (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))))))
6463oveq1d 7420 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) = ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))↑2))
6524zred 12662 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ ℝ)
6665, 20resubcld 11638 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ ℝ)
6729zred 12662 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) ∈ ℝ)
6867, 26resubcld 11638 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ ℝ)
69 absreimsq 15235 . . . . . . . . . . . . . . . . 17 ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ ℝ ∧ ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ ℝ) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))↑2) = ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)))
7066, 68, 69syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) + (i Β· ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))))↑2) = ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)))
7164, 70eqtrd 2772 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) = ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)))
7266resqcld 14086 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) ∈ ℝ)
7368resqcld 14086 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2) ∈ ℝ)
7421resqcli 14146 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) ∈ ℝ
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((1 / 2)↑2) ∈ ℝ)
7621a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (1 / 2) ∈ ℝ)
77 absresq 15245 . . . . . . . . . . . . . . . . . . 19 (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ ℝ β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2))
7866, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2))
79 rddif 15283 . . . . . . . . . . . . . . . . . . . 20 (((β„œβ€˜π‘¦) / π‘Ÿ) ∈ ℝ β†’ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
8020, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
8166recnd 11238 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
8281abscld 15379 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ∈ ℝ)
8381absge0d 15387 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))))
84 halfgt0 12424 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
8521, 84elrpii 12973 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) ∈ ℝ+
86 rpge0 12983 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) ∈ ℝ+ β†’ 0 ≀ (1 / 2))
8785, 86mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (1 / 2))
8882, 76, 83, 87le2sqd 14216 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2) ↔ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2)))
8980, 88mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2))
9078, 89eqbrtrrd 5171 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) ≀ ((1 / 2)↑2))
91 halfcn 12423 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ β„‚
9291sqvali 14140 . . . . . . . . . . . . . . . . . . 19 ((1 / 2)↑2) = ((1 / 2) Β· (1 / 2))
93 halflt1 12426 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
9421, 39, 21, 84ltmul1ii 12138 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) < 1 ↔ ((1 / 2) Β· (1 / 2)) < (1 Β· (1 / 2)))
9593, 94mpbi 229 . . . . . . . . . . . . . . . . . . . 20 ((1 / 2) Β· (1 / 2)) < (1 Β· (1 / 2))
9691mullidi 11215 . . . . . . . . . . . . . . . . . . . 20 (1 Β· (1 / 2)) = (1 / 2)
9795, 96breqtri 5172 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) Β· (1 / 2)) < (1 / 2)
9892, 97eqbrtri 5168 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) < (1 / 2)
9998a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((1 / 2)↑2) < (1 / 2))
10072, 75, 76, 90, 99lelttrd 11368 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) < (1 / 2))
101 absresq 15245 . . . . . . . . . . . . . . . . . . 19 (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ ℝ β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2))
10268, 101syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) = (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2))
103 rddif 15283 . . . . . . . . . . . . . . . . . . . 20 (((β„‘β€˜π‘¦) / π‘Ÿ) ∈ ℝ β†’ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
10426, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2))
10568recnd 11238 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)) ∈ β„‚)
106105abscld 15379 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ∈ ℝ)
107105absge0d 15387 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))))
108106, 76, 107, 87le2sqd 14216 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))) ≀ (1 / 2) ↔ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2)))
109104, 108mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ)))↑2) ≀ ((1 / 2)↑2))
110102, 109eqbrtrrd 5171 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2) ≀ ((1 / 2)↑2))
11173, 75, 76, 110, 99lelttrd 11368 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2) < (1 / 2))
11272, 73, 40, 100, 111lt2halvesd 12456 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„œβ€˜π‘¦) / π‘Ÿ))↑2) + (((βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))) βˆ’ ((β„‘β€˜π‘¦) / π‘Ÿ))↑2)) < 1)
11371, 112eqbrtrd 5169 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) < 1)
114 sq1 14155 . . . . . . . . . . . . . 14 (1↑2) = 1
115113, 114breqtrrdi 5189 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) < (1↑2))
11637absge0d 15387 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))))
117 0le1 11733 . . . . . . . . . . . . . . 15 0 ≀ 1
118117a1i 11 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ 1)
11938, 40, 116, 118lt2sqd 14215 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) < 1 ↔ ((absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))↑2) < (1↑2)))
120115, 119mpbird 256 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) < 1)
12138, 40, 19, 120ltmul2dd 13068 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) < (π‘Ÿ Β· 1))
12234, 33mulcld 11230 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) ∈ β„‚)
123 eqid 2732 . . . . . . . . . . . . . 14 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
124123cnmetdval 24278 . . . . . . . . . . . . 13 (((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) = (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)))
125122, 17, 124syl2anc 584 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) = (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)))
12634, 33, 36subdid 11666 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ (π‘Ÿ Β· (𝑦 / π‘Ÿ))))
12717, 34, 35divcan2d 11988 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (𝑦 / π‘Ÿ)) = 𝑦)
128127oveq2d 7421 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ (π‘Ÿ Β· (𝑦 / π‘Ÿ))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦))
129126, 128eqtrd 2772 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦))
130129fveq2d 6892 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)))
13134, 37absmuld 15397 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜(π‘Ÿ Β· (((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = ((absβ€˜π‘Ÿ) Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))))
132130, 131eqtr3d 2774 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) βˆ’ 𝑦)) = ((absβ€˜π‘Ÿ) Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))))
13319rpge0d 13016 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 0 ≀ π‘Ÿ)
13452, 133absidd 15365 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (absβ€˜π‘Ÿ) = π‘Ÿ)
135134oveq1d 7420 . . . . . . . . . . . 12 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((absβ€˜π‘Ÿ) Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = (π‘Ÿ Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))))
136125, 132, 1353eqtrrd 2777 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· (absβ€˜(((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) βˆ’ (𝑦 / π‘Ÿ)))) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦))
13734mulridd 11227 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (π‘Ÿ Β· 1) = π‘Ÿ)
138121, 136, 1373brtr3d 5178 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) < π‘Ÿ)
139 cnxmet 24280 . . . . . . . . . . . 12 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
140139a1i 11 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚))
141 rpxr 12979 . . . . . . . . . . . 12 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ*)
142141ad2antrl 726 . . . . . . . . . . 11 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ π‘Ÿ ∈ ℝ*)
143 elbl2 23887 . . . . . . . . . . 11 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘Ÿ ∈ ℝ*) ∧ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))) ∈ β„‚ ∧ 𝑦 ∈ β„‚)) β†’ (𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) < π‘Ÿ))
144140, 142, 122, 17, 143syl22anc 837 . . . . . . . . . 10 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ (𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(abs ∘ βˆ’ )𝑦) < π‘Ÿ))
145138, 144mpbird 256 . . . . . . . . 9 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ 𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
146 oveq2 7413 . . . . . . . . . . . 12 (𝑧 = ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) β†’ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2)))))))
147146oveq1d 7420 . . . . . . . . . . 11 (𝑧 = ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) β†’ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
148147eleq2d 2819 . . . . . . . . . 10 (𝑧 = ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) β†’ (𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ 𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
149148rspcev 3612 . . . . . . . . 9 ((((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))) ∈ β„€[i] ∧ 𝑦 ∈ ((π‘Ÿ Β· ((βŒŠβ€˜(((β„œβ€˜π‘¦) / π‘Ÿ) + (1 / 2))) + (i Β· (βŒŠβ€˜(((β„‘β€˜π‘¦) / π‘Ÿ) + (1 / 2))))))(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
15031, 145, 149syl2anc 584 . . . . . . . 8 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ (π‘Ÿ ∈ ℝ+ ∧ 𝑦 ∈ 𝑋)) β†’ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
151150expr 457 . . . . . . 7 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ (𝑦 ∈ 𝑋 β†’ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
152 eliun 5000 . . . . . . . 8 (𝑦 ∈ βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
153 ovex 7438 . . . . . . . . . 10 (π‘Ÿ Β· 𝑧) ∈ V
154153rgenw 3065 . . . . . . . . 9 βˆ€π‘§ ∈ β„€[i] (π‘Ÿ Β· 𝑧) ∈ V
155 eqid 2732 . . . . . . . . . 10 (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) = (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))
156 oveq1 7412 . . . . . . . . . . 11 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
157156eleq2d 2819 . . . . . . . . . 10 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
158155, 157rexrnmptw 7093 . . . . . . . . 9 (βˆ€π‘§ ∈ β„€[i] (π‘Ÿ Β· 𝑧) ∈ V β†’ (βˆƒπ‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
159154, 158ax-mp 5 . . . . . . . 8 (βˆƒπ‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
160152, 159bitri 274 . . . . . . 7 (𝑦 ∈ βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ βˆƒπ‘§ ∈ β„€[i] 𝑦 ∈ ((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
161151, 160syl6ibr 251 . . . . . 6 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ (𝑦 ∈ 𝑋 β†’ 𝑦 ∈ βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
162161ssrdv 3987 . . . . 5 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ 𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
163 simpl 483 . . . . . . 7 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ 𝐷 ∈ (Bndβ€˜π‘‹))
164 0cn 11202 . . . . . . . 8 0 ∈ β„‚
16513ssbnd 36644 . . . . . . . 8 (((abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚) ∧ 0 ∈ β„‚) β†’ (𝐷 ∈ (Bndβ€˜π‘‹) ↔ βˆƒπ‘‘ ∈ ℝ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)))
16612, 164, 165mp2an 690 . . . . . . 7 (𝐷 ∈ (Bndβ€˜π‘‹) ↔ βˆƒπ‘‘ ∈ ℝ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))
167163, 166sylib 217 . . . . . 6 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘‘ ∈ ℝ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))
168 fzfi 13933 . . . . . . . . 9 (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∈ Fin
169 xpfi 9313 . . . . . . . . 9 (((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∈ Fin ∧ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∈ Fin) β†’ ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ∈ Fin)
170168, 168, 169mp2an 690 . . . . . . . 8 ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ∈ Fin
171 eqid 2732 . . . . . . . . . 10 (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) = (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
172 ovex 7438 . . . . . . . . . 10 (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))) ∈ V
173171, 172fnmpoi 8052 . . . . . . . . 9 (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) Fn ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
174 dffn4 6808 . . . . . . . . 9 ((π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) Fn ((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ↔ (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))):((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))–ontoβ†’ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
175173, 174mpbi 229 . . . . . . . 8 (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))):((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))–ontoβ†’ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
176 fofi 9334 . . . . . . . 8 ((((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))) ∈ Fin ∧ (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))):((-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) Γ— (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))–ontoβ†’ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))) β†’ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ∈ Fin)
177170, 175, 176mp2an 690 . . . . . . 7 ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ∈ Fin
178155, 153elrnmpti 5957 . . . . . . . . . 10 (π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ↔ βˆƒπ‘§ ∈ β„€[i] π‘₯ = (π‘Ÿ Β· 𝑧))
179 elgz 16860 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ β„€[i] ↔ (𝑧 ∈ β„‚ ∧ (β„œβ€˜π‘§) ∈ β„€ ∧ (β„‘β€˜π‘§) ∈ β„€))
180179simp2bi 1146 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ β„€[i] β†’ (β„œβ€˜π‘§) ∈ β„€)
181180ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ β„€)
182181zcnd 12663 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ β„‚)
183182abscld 15379 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„œβ€˜π‘§)) ∈ ℝ)
1844ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 𝑧 ∈ β„‚)
185184abscld 15379 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) ∈ ℝ)
186 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ π‘Ÿ ∈ ℝ+)
187186adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘Ÿ ∈ ℝ+)
188187rpred 13012 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘Ÿ ∈ ℝ)
189 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 𝑑 ∈ ℝ)
190189adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 𝑑 ∈ ℝ)
191188, 190readdcld 11239 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ + 𝑑) ∈ ℝ)
192191, 187rerpdivcld 13043 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ + 𝑑) / π‘Ÿ) ∈ ℝ)
193192flcld 13759 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) ∈ β„€)
194193peano2zd 12665 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€)
195194zred 12662 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ ℝ)
196 absrele 15251 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ β„‚ β†’ (absβ€˜(β„œβ€˜π‘§)) ≀ (absβ€˜π‘§))
197184, 196syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„œβ€˜π‘§)) ≀ (absβ€˜π‘§))
198187rpcnd 13014 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘Ÿ ∈ β„‚)
199198, 184absmuld 15397 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) = ((absβ€˜π‘Ÿ) Β· (absβ€˜π‘§)))
200187rpge0d 13016 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 0 ≀ π‘Ÿ)
201188, 200absidd 15365 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘Ÿ) = π‘Ÿ)
202201oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜π‘Ÿ) Β· (absβ€˜π‘§)) = (π‘Ÿ Β· (absβ€˜π‘§)))
203199, 202eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) = (π‘Ÿ Β· (absβ€˜π‘§)))
204 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))
205 sslin 4233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) βŠ† (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) βŠ† (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)))
207139a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚))
2086adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
209164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 0 ∈ β„‚)
210186rpxrd 13013 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ π‘Ÿ ∈ ℝ*)
211189rexrd 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ 𝑑 ∈ ℝ*)
212 bldisj 23895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ (π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) ∧ (π‘Ÿ ∈ ℝ* ∧ 𝑑 ∈ ℝ* ∧ (π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0))) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…)
2132123exp2 1354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ (π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) β†’ (π‘Ÿ ∈ ℝ* β†’ (𝑑 ∈ ℝ* β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…))))
214213imp32 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ (π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) ∧ (π‘Ÿ ∈ ℝ* ∧ 𝑑 ∈ ℝ*)) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…))
215207, 208, 209, 210, 211, 214syl32anc 1378 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…))
216 sseq0 4398 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) βŠ† (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ (0(ballβ€˜(abs ∘ βˆ’ ))𝑑)) = βˆ…) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = βˆ…)
217206, 215, 216syl6an 682 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) β†’ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = βˆ…))
218217necon3ad 2953 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ Β¬ (π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0)))
219218imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ Β¬ (π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0))
220 rexadd 13207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘Ÿ ∈ ℝ ∧ 𝑑 ∈ ℝ) β†’ (π‘Ÿ +𝑒 𝑑) = (π‘Ÿ + 𝑑))
221188, 190, 220syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ +𝑒 𝑑) = (π‘Ÿ + 𝑑))
222208adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ Β· 𝑧) ∈ β„‚)
223123cnmetdval 24278 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ÿ Β· 𝑧) ∈ β„‚ ∧ 0 ∈ β„‚) β†’ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) = (absβ€˜((π‘Ÿ Β· 𝑧) βˆ’ 0)))
224222, 164, 223sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) = (absβ€˜((π‘Ÿ Β· 𝑧) βˆ’ 0)))
225222subid1d 11556 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· 𝑧) βˆ’ 0) = (π‘Ÿ Β· 𝑧))
226225fveq2d 6892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜((π‘Ÿ Β· 𝑧) βˆ’ 0)) = (absβ€˜(π‘Ÿ Β· 𝑧)))
227224, 226eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) = (absβ€˜(π‘Ÿ Β· 𝑧)))
228221, 227breq12d 5160 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ +𝑒 𝑑) ≀ ((π‘Ÿ Β· 𝑧)(abs ∘ βˆ’ )0) ↔ (π‘Ÿ + 𝑑) ≀ (absβ€˜(π‘Ÿ Β· 𝑧))))
229219, 228mtbid 323 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ Β¬ (π‘Ÿ + 𝑑) ≀ (absβ€˜(π‘Ÿ Β· 𝑧)))
230222abscld 15379 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) ∈ ℝ)
231230, 191ltnled 11357 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜(π‘Ÿ Β· 𝑧)) < (π‘Ÿ + 𝑑) ↔ Β¬ (π‘Ÿ + 𝑑) ≀ (absβ€˜(π‘Ÿ Β· 𝑧))))
232229, 231mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(π‘Ÿ Β· 𝑧)) < (π‘Ÿ + 𝑑))
233203, 232eqbrtrrd 5171 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ Β· (absβ€˜π‘§)) < (π‘Ÿ + 𝑑))
234185, 191, 187ltmuldiv2d 13060 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ Β· (absβ€˜π‘§)) < (π‘Ÿ + 𝑑) ↔ (absβ€˜π‘§) < ((π‘Ÿ + 𝑑) / π‘Ÿ)))
235233, 234mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) < ((π‘Ÿ + 𝑑) / π‘Ÿ))
236 flltp1 13761 . . . . . . . . . . . . . . . . . . . . 21 (((π‘Ÿ + 𝑑) / π‘Ÿ) ∈ ℝ β†’ ((π‘Ÿ + 𝑑) / π‘Ÿ) < ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
237192, 236syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((π‘Ÿ + 𝑑) / π‘Ÿ) < ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
238185, 192, 195, 235, 237lttrd 11371 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) < ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
239185, 195, 238ltled 11358 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
240183, 185, 195, 197, 239letrd 11367 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„œβ€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
241181zred 12662 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ ℝ)
242241, 195absled 15373 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜(β„œβ€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
243240, 242mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
244194znegcld 12664 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ -((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€)
245 elfz 13486 . . . . . . . . . . . . . . . . 17 (((β„œβ€˜π‘§) ∈ β„€ ∧ -((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€ ∧ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€) β†’ ((β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
246181, 244, 194, 245syl3anc 1371 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„œβ€˜π‘§) ∧ (β„œβ€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
247243, 246mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
248179simp3bi 1147 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ β„€[i] β†’ (β„‘β€˜π‘§) ∈ β„€)
249248ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ β„€)
250249zcnd 12663 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ β„‚)
251250abscld 15379 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„‘β€˜π‘§)) ∈ ℝ)
252 absimle 15252 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ β„‚ β†’ (absβ€˜(β„‘β€˜π‘§)) ≀ (absβ€˜π‘§))
253184, 252syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„‘β€˜π‘§)) ≀ (absβ€˜π‘§))
254251, 185, 195, 253, 239letrd 11367 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (absβ€˜(β„‘β€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))
255249zred 12662 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ ℝ)
256255, 195absled 15373 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((absβ€˜(β„‘β€˜π‘§)) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
257254, 256mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
258 elfz 13486 . . . . . . . . . . . . . . . . 17 (((β„‘β€˜π‘§) ∈ β„€ ∧ -((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€ ∧ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ∈ β„€) β†’ ((β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
259249, 244, 194, 258syl3anc 1371 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ ((β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↔ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1) ≀ (β„‘β€˜π‘§) ∧ (β„‘β€˜π‘§) ≀ ((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))))
260257, 259mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)))
261184replimd 15140 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ 𝑧 = ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))
262261oveq2d 7421 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§)))))
263 oveq1 7412 . . . . . . . . . . . . . . . . . 18 (π‘Ž = (β„œβ€˜π‘§) β†’ (π‘Ž + (i Β· 𝑏)) = ((β„œβ€˜π‘§) + (i Β· 𝑏)))
264263oveq2d 7421 . . . . . . . . . . . . . . . . 17 (π‘Ž = (β„œβ€˜π‘§) β†’ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏))))
265264eqeq2d 2743 . . . . . . . . . . . . . . . 16 (π‘Ž = (β„œβ€˜π‘§) β†’ ((π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))) ↔ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏)))))
266 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (β„‘β€˜π‘§) β†’ (i Β· 𝑏) = (i Β· (β„‘β€˜π‘§)))
267266oveq2d 7421 . . . . . . . . . . . . . . . . . 18 (𝑏 = (β„‘β€˜π‘§) β†’ ((β„œβ€˜π‘§) + (i Β· 𝑏)) = ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))
268267oveq2d 7421 . . . . . . . . . . . . . . . . 17 (𝑏 = (β„‘β€˜π‘§) β†’ (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏))) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§)))))
269268eqeq2d 2743 . . . . . . . . . . . . . . . 16 (𝑏 = (β„‘β€˜π‘§) β†’ ((π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· 𝑏))) ↔ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))))
270265, 269rspc2ev 3623 . . . . . . . . . . . . . . 15 (((β„œβ€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∧ (β„‘β€˜π‘§) ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ∧ (π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· ((β„œβ€˜π‘§) + (i Β· (β„‘β€˜π‘§))))) β†’ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
271247, 260, 262, 270syl3anc 1371 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) ∧ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
272271ex 413 . . . . . . . . . . . . 13 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
273171, 172elrnmpo 7541 . . . . . . . . . . . . 13 ((π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ↔ βˆƒπ‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))βˆƒπ‘ ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1))(π‘Ÿ Β· 𝑧) = (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))
274272, 273syl6ibr 251 . . . . . . . . . . . 12 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ (π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))))
275156ineq1d 4210 . . . . . . . . . . . . . 14 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋))
276275neeq1d 3000 . . . . . . . . . . . . 13 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… ↔ (((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…))
277 eleq1 2821 . . . . . . . . . . . . 13 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ↔ (π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))))
278276, 277imbi12d 344 . . . . . . . . . . . 12 (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ ((((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))) ↔ ((((π‘Ÿ Β· 𝑧)(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ (π‘Ÿ Β· 𝑧) ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
279274, 278syl5ibrcom 246 . . . . . . . . . . 11 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ 𝑧 ∈ β„€[i]) β†’ (π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
280279rexlimdva 3155 . . . . . . . . . 10 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ (βˆƒπ‘§ ∈ β„€[i] π‘₯ = (π‘Ÿ Β· 𝑧) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
281178, 280biimtrid 241 . . . . . . . . 9 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ (π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ (((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ… β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))))
2822813imp 1111 . . . . . . . 8 ((((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) ∧ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∧ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…) β†’ π‘₯ ∈ ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
283282rabssdv 4071 . . . . . . 7 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} βŠ† ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))))
284 ssfi 9169 . . . . . . 7 ((ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏)))) ∈ Fin ∧ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} βŠ† ran (π‘Ž ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)), 𝑏 ∈ (-((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)...((βŒŠβ€˜((π‘Ÿ + 𝑑) / π‘Ÿ)) + 1)) ↦ (π‘Ÿ Β· (π‘Ž + (i Β· 𝑏))))) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)
285177, 283, 284sylancr 587 . . . . . 6 (((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 βŠ† (0(ballβ€˜(abs ∘ βˆ’ ))𝑑))) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)
286167, 285rexlimddv 3161 . . . . 5 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)
287 iuneq1 5012 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
288287sseq2d 4013 . . . . . . 7 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ (𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ 𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
289 rabeq 3446 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} = {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…})
290289eleq1d 2818 . . . . . . 7 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ ({π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin ↔ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
291288, 290anbi12d 631 . . . . . 6 (𝑦 = ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) β†’ ((𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin) ↔ (𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)))
292291rspcev 3612 . . . . 5 ((ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∈ 𝒫 β„‚ ∧ (𝑋 βŠ† βˆͺ π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧))(π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ ran (𝑧 ∈ β„€[i] ↦ (π‘Ÿ Β· 𝑧)) ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)) β†’ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
29311, 162, 286, 292syl12anc 835 . . . 4 ((𝐷 ∈ (Bndβ€˜π‘‹) ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
294293ralrimiva 3146 . . 3 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin))
29513sstotbnd3 36632 . . . 4 (((abs ∘ βˆ’ ) ∈ (Metβ€˜β„‚) ∧ 𝑋 βŠ† β„‚) β†’ (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)))
29612, 15, 295sylancr 587 . . 3 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝒫 β„‚(𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑦 (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ {π‘₯ ∈ 𝑦 ∣ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) β‰  βˆ…} ∈ Fin)))
297294, 296mpbird 256 . 2 (𝐷 ∈ (Bndβ€˜π‘‹) β†’ 𝐷 ∈ (TotBndβ€˜π‘‹))
2981, 297impbii 208 1 (𝐷 ∈ (TotBndβ€˜π‘‹) ↔ 𝐷 ∈ (Bndβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ ciun 4996   class class class wbr 5147   ↦ cmpt 5230   Γ— cxp 5673  ran crn 5676   β†Ύ cres 5677   ∘ ccom 5679   Fn wfn 6535  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Fincfn 8935  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107  ici 11108   + caddc 11109   Β· cmul 11111  β„*cxr 11243   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  -cneg 11441   / cdiv 11867  2c2 12263  β„€cz 12554  β„+crp 12970   +𝑒 cxad 13086  ...cfz 13480  βŒŠcfl 13751  β†‘cexp 14023  β„œcre 15040  β„‘cim 15041  abscabs 15177  β„€[i]cgz 16858  βˆžMetcxmet 20921  Metcmet 20922  ballcbl 20923  TotBndctotbnd 36622  Bndcbnd 36623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-ec 8701  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-fz 13481  df-fl 13753  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-gz 16859  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-totbnd 36624  df-bnd 36635
This theorem is referenced by:  cnpwstotbnd  36653
  Copyright terms: Public domain W3C validator