Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntotbnd Structured version   Visualization version   GIF version

Theorem cntotbnd 35954
Description: A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
cntotbnd.d 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cntotbnd (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))

Proof of Theorem cntotbnd
Dummy variables 𝑎 𝑏 𝑑 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 35947 . 2 (𝐷 ∈ (TotBnd‘𝑋) → 𝐷 ∈ (Bnd‘𝑋))
2 rpcn 12740 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
32adantl 482 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
4 gzcn 16633 . . . . . . . . 9 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
5 mulcl 10955 . . . . . . . . 9 ((𝑟 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑟 · 𝑧) ∈ ℂ)
63, 4, 5syl2an 596 . . . . . . . 8 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
76fmpttd 6989 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)):ℤ[i]⟶ℂ)
87frnd 6608 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
9 cnex 10952 . . . . . . 7 ℂ ∈ V
109elpw2 5269 . . . . . 6 (ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ↔ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ⊆ ℂ)
118, 10sylibr 233 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ)
12 cnmet 23935 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
13 cntotbnd.d . . . . . . . . . . . . . . . . . 18 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋))
1413bnd2lem 35949 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐷 ∈ (Bnd‘𝑋)) → 𝑋 ⊆ ℂ)
1512, 14mpan 687 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (Bnd‘𝑋) → 𝑋 ⊆ ℂ)
1615sselda 3921 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ ℂ)
1716adantrl 713 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ℂ)
1817recld 14905 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘𝑦) ∈ ℝ)
19 simprl 768 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ+)
2018, 19rerpdivcld 12803 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℝ)
21 halfre 12187 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
22 readdcl 10954 . . . . . . . . . . . 12 ((((ℜ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2320, 21, 22sylancl 586 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℜ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2423flcld 13518 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
2517imcld 14906 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘𝑦) ∈ ℝ)
2625, 19rerpdivcld 12803 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℝ)
27 readdcl 10954 . . . . . . . . . . . 12 ((((ℑ‘𝑦) / 𝑟) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2826, 21, 27sylancl 586 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((ℑ‘𝑦) / 𝑟) + (1 / 2)) ∈ ℝ)
2928flcld 13518 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ)
30 gzreim 16640 . . . . . . . . . 10 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℤ) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
3124, 29, 30syl2anc 584 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i])
32 gzcn 16633 . . . . . . . . . . . . . . 15 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3331, 32syl 17 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℂ)
3419rpcnd 12774 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℂ)
3519rpne0d 12777 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ≠ 0)
3617, 34, 35divcld 11751 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) ∈ ℂ)
3733, 36subcld 11332 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) ∈ ℂ)
3837abscld 15148 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) ∈ ℝ)
39 1re 10975 . . . . . . . . . . . . 13 1 ∈ ℝ
4039a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 1 ∈ ℝ)
4124zcnd 12427 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
42 ax-icn 10930 . . . . . . . . . . . . . . . . . . . . 21 i ∈ ℂ
4329zcnd 12427 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ)
44 mulcl 10955 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℂ) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4542, 43, 44sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) ∈ ℂ)
4620recnd 11003 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘𝑦) / 𝑟) ∈ ℂ)
4726recnd 11003 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℑ‘𝑦) / 𝑟) ∈ ℂ)
48 mulcl 10955 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ ((ℑ‘𝑦) / 𝑟) ∈ ℂ) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
4942, 47, 48sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
5041, 45, 46, 49addsub4d 11379 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
5136replimd 14908 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))))
5219rpred 12772 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ)
5352, 17, 35redivd 14940 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℜ‘(𝑦 / 𝑟)) = ((ℜ‘𝑦) / 𝑟))
5452, 17, 35imdivd 14941 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (ℑ‘(𝑦 / 𝑟)) = ((ℑ‘𝑦) / 𝑟))
5554oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · (ℑ‘(𝑦 / 𝑟))) = (i · ((ℑ‘𝑦) / 𝑟)))
5653, 55oveq12d 7293 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((ℜ‘(𝑦 / 𝑟)) + (i · (ℑ‘(𝑦 / 𝑟)))) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5751, 56eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 / 𝑟) = (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟))))
5857oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (((ℜ‘𝑦) / 𝑟) + (i · ((ℑ‘𝑦) / 𝑟)))))
5942a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → i ∈ ℂ)
6059, 43, 47subdid 11431 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) = ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟))))
6160oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + ((i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))) − (i · ((ℑ‘𝑦) / 𝑟)))))
6250, 58, 613eqtr4d 2788 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))
6362fveq2d 6778 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))))
6463oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2))
6524zred 12426 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6665, 20resubcld 11403 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ)
6729zred 12426 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) ∈ ℝ)
6867, 26resubcld 11403 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ)
69 absreimsq 15004 . . . . . . . . . . . . . . . . 17 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ ∧ ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7066, 68, 69syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) + (i · ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7164, 70eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) = ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)))
7266resqcld 13965 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7368resqcld 13965 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ∈ ℝ)
7421resqcli 13903 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) ∈ ℝ
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) ∈ ℝ)
7621a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (1 / 2) ∈ ℝ)
77 absresq 15014 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
7866, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2))
79 rddif 15052 . . . . . . . . . . . . . . . . . . . 20 (((ℜ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8020, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2))
8166recnd 11003 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)) ∈ ℂ)
8281abscld 15148 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ∈ ℝ)
8381absge0d 15156 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))))
84 halfgt0 12189 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
8521, 84elrpii 12733 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) ∈ ℝ+
86 rpge0 12743 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
8785, 86mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (1 / 2))
8882, 76, 83, 87le2sqd 13974 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
8980, 88mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
9078, 89eqbrtrrd 5098 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
91 halfcn 12188 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) ∈ ℂ
9291sqvali 13897 . . . . . . . . . . . . . . . . . . 19 ((1 / 2)↑2) = ((1 / 2) · (1 / 2))
93 halflt1 12191 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
9421, 39, 21, 84ltmul1ii 11903 . . . . . . . . . . . . . . . . . . . . 21 ((1 / 2) < 1 ↔ ((1 / 2) · (1 / 2)) < (1 · (1 / 2)))
9593, 94mpbi 229 . . . . . . . . . . . . . . . . . . . 20 ((1 / 2) · (1 / 2)) < (1 · (1 / 2))
9691mulid2i 10980 . . . . . . . . . . . . . . . . . . . 20 (1 · (1 / 2)) = (1 / 2)
9795, 96breqtri 5099 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) · (1 / 2)) < (1 / 2)
9892, 97eqbrtri 5095 . . . . . . . . . . . . . . . . . 18 ((1 / 2)↑2) < (1 / 2)
9998a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((1 / 2)↑2) < (1 / 2))
10072, 75, 76, 90, 99lelttrd 11133 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) < (1 / 2))
101 absresq 15014 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℝ → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
10268, 101syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) = (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2))
103 rddif 15052 . . . . . . . . . . . . . . . . . . . 20 (((ℑ‘𝑦) / 𝑟) ∈ ℝ → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10426, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2))
10568recnd 11003 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)) ∈ ℂ)
106105abscld 15148 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ∈ ℝ)
107105absge0d 15156 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))))
108106, 76, 107, 87le2sqd 13974 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))) ≤ (1 / 2) ↔ ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2)))
109104, 108mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟)))↑2) ≤ ((1 / 2)↑2))
110102, 109eqbrtrrd 5098 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) ≤ ((1 / 2)↑2))
11173, 75, 76, 110, 99lelttrd 11133 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2) < (1 / 2))
11272, 73, 40, 100, 111lt2halvesd 12221 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) − ((ℜ‘𝑦) / 𝑟))↑2) + (((⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))) − ((ℑ‘𝑦) / 𝑟))↑2)) < 1)
11371, 112eqbrtrd 5096 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < 1)
114 sq1 13912 . . . . . . . . . . . . . 14 (1↑2) = 1
115113, 114breqtrrdi 5116 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2))
11637absge0d 15156 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))))
117 0le1 11498 . . . . . . . . . . . . . . 15 0 ≤ 1
118117a1i 11 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 1)
11938, 40, 116, 118lt2sqd 13973 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1 ↔ ((abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))↑2) < (1↑2)))
120115, 119mpbird 256 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) < 1)
12138, 40, 19, 120ltmul2dd 12828 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) < (𝑟 · 1))
12234, 33mulcld 10995 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ)
123 eqid 2738 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 23934 . . . . . . . . . . . . 13 (((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
125122, 17, 124syl2anc 584 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
12634, 33, 36subdid 11431 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))))
12717, 34, 35divcan2d 11753 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (𝑦 / 𝑟)) = 𝑦)
128127oveq2d 7291 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − (𝑟 · (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
129126, 128eqtrd 2778 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦))
130129fveq2d 6778 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)))
13134, 37absmuld 15166 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘(𝑟 · (((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
132130, 131eqtr3d 2780 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) − 𝑦)) = ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
13319rpge0d 12776 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 0 ≤ 𝑟)
13452, 133absidd 15134 . . . . . . . . . . . . 13 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs‘𝑟) = 𝑟)
135134oveq1d 7290 . . . . . . . . . . . 12 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((abs‘𝑟) · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))))
136125, 132, 1353eqtrrd 2783 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · (abs‘(((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) − (𝑦 / 𝑟)))) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦))
13734mulid1d 10992 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑟 · 1) = 𝑟)
138121, 136, 1373brtr3d 5105 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟)
139 cnxmet 23936 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
140139a1i 11 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
141 rpxr 12739 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
142141ad2antrl 725 . . . . . . . . . . 11 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑟 ∈ ℝ*)
143 elbl2 23543 . . . . . . . . . . 11 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))) ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
144140, 142, 122, 17, 143syl22anc 836 . . . . . . . . . 10 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → (𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟) ↔ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(abs ∘ − )𝑦) < 𝑟))
145138, 144mpbird 256 . . . . . . . . 9 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
146 oveq2 7283 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑟 · 𝑧) = (𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2)))))))
147146oveq1d 7290 . . . . . . . . . . 11 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) = ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟))
148147eleq2d 2824 . . . . . . . . . 10 (𝑧 = ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) → (𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)))
149148rspcev 3561 . . . . . . . . 9 ((((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))) ∈ ℤ[i] ∧ 𝑦 ∈ ((𝑟 · ((⌊‘(((ℜ‘𝑦) / 𝑟) + (1 / 2))) + (i · (⌊‘(((ℑ‘𝑦) / 𝑟) + (1 / 2))))))(ball‘(abs ∘ − ))𝑟)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
15031, 145, 149syl2anc 584 . . . . . . . 8 ((𝐷 ∈ (Bnd‘𝑋) ∧ (𝑟 ∈ ℝ+𝑦𝑋)) → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
151150expr 457 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋 → ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
152 eliun 4928 . . . . . . . 8 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
153 ovex 7308 . . . . . . . . . 10 (𝑟 · 𝑧) ∈ V
154153rgenw 3076 . . . . . . . . 9 𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V
155 eqid 2738 . . . . . . . . . 10 (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) = (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))
156 oveq1 7282 . . . . . . . . . . 11 (𝑥 = (𝑟 · 𝑧) → (𝑥(ball‘(abs ∘ − ))𝑟) = ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
157156eleq2d 2824 . . . . . . . . . 10 (𝑥 = (𝑟 · 𝑧) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
158155, 157rexrnmptw 6971 . . . . . . . . 9 (∀𝑧 ∈ ℤ[i] (𝑟 · 𝑧) ∈ V → (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟)))
159154, 158ax-mp 5 . . . . . . . 8 (∃𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
160152, 159bitri 274 . . . . . . 7 (𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ↔ ∃𝑧 ∈ ℤ[i] 𝑦 ∈ ((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟))
161151, 160syl6ibr 251 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑦𝑋𝑦 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
162161ssrdv 3927 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
163 simpl 483 . . . . . . 7 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Bnd‘𝑋))
164 0cn 10967 . . . . . . . 8 0 ∈ ℂ
16513ssbnd 35946 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 0 ∈ ℂ) → (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑)))
16612, 164, 165mp2an 689 . . . . . . 7 (𝐷 ∈ (Bnd‘𝑋) ↔ ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
167163, 166sylib 217 . . . . . 6 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑑 ∈ ℝ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
168 fzfi 13692 . . . . . . . . 9 (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin
169 xpfi 9085 . . . . . . . . 9 (((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin ∧ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∈ Fin) → ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin)
170168, 168, 169mp2an 689 . . . . . . . 8 ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin
171 eqid 2738 . . . . . . . . . 10 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) = (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
172 ovex 7308 . . . . . . . . . 10 (𝑟 · (𝑎 + (i · 𝑏))) ∈ V
173171, 172fnmpoi 7910 . . . . . . . . 9 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
174 dffn4 6694 . . . . . . . . 9 ((𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) Fn ((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ↔ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
175173, 174mpbi 229 . . . . . . . 8 (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))
176 fofi 9105 . . . . . . . 8 ((((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))) ∈ Fin ∧ (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))):((-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) × (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))–onto→ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin)
177170, 175, 176mp2an 689 . . . . . . 7 ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin
178155, 153elrnmpti 5869 . . . . . . . . . 10 (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ↔ ∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧))
179 elgz 16632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
180179simp2bi 1145 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
181180ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℤ)
182181zcnd 12427 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℂ)
183182abscld 15148 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ∈ ℝ)
1844ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 ∈ ℂ)
185184abscld 15148 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ∈ ℝ)
186 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ+)
187186adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ+)
188187rpred 12772 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℝ)
189 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ)
190189adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑑 ∈ ℝ)
191188, 190readdcld 11004 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 + 𝑑) ∈ ℝ)
192191, 187rerpdivcld 12803 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) ∈ ℝ)
193192flcld 13518 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (⌊‘((𝑟 + 𝑑) / 𝑟)) ∈ ℤ)
194193peano2zd 12429 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
195194zred 12426 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℝ)
196 absrele 15020 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
197184, 196syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ (abs‘𝑧))
198187rpcnd 12774 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑟 ∈ ℂ)
199198, 184absmuld 15166 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = ((abs‘𝑟) · (abs‘𝑧)))
200187rpge0d 12776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 0 ≤ 𝑟)
201188, 200absidd 15134 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑟) = 𝑟)
202201oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘𝑟) · (abs‘𝑧)) = (𝑟 · (abs‘𝑧)))
203199, 202eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) = (𝑟 · (abs‘𝑧)))
204 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))
205 sslin 4168 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)))
207139a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (abs ∘ − ) ∈ (∞Met‘ℂ))
2086adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑟 · 𝑧) ∈ ℂ)
209164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 0 ∈ ℂ)
210186rpxrd 12773 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑟 ∈ ℝ*)
211189rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → 𝑑 ∈ ℝ*)
212 bldisj 23551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅)
2132123exp2 1353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → (𝑟 ∈ ℝ* → (𝑑 ∈ ℝ* → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))))
214213imp32 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) ∧ (𝑟 ∈ ℝ*𝑑 ∈ ℝ*)) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
215207, 208, 209, 210, 211, 214syl32anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅))
216 sseq0 4333 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ⊆ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ (0(ball‘(abs ∘ − ))𝑑)) = ∅) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅)
217206, 215, 216syl6an 681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) → (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ∅))
218217necon3ad 2956 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0)))
219218imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0))
220 rexadd 12966 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
221188, 190, 220syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 +𝑒 𝑑) = (𝑟 + 𝑑))
222208adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) ∈ ℂ)
223123cnmetdval 23934 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑟 · 𝑧) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
224222, 164, 223sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘((𝑟 · 𝑧) − 0)))
225222subid1d 11321 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧) − 0) = (𝑟 · 𝑧))
226225fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘((𝑟 · 𝑧) − 0)) = (abs‘(𝑟 · 𝑧)))
227224, 226eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · 𝑧)(abs ∘ − )0) = (abs‘(𝑟 · 𝑧)))
228221, 227breq12d 5087 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 +𝑒 𝑑) ≤ ((𝑟 · 𝑧)(abs ∘ − )0) ↔ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
229219, 228mtbid 324 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧)))
230222abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) ∈ ℝ)
231230, 191ltnled 11122 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑) ↔ ¬ (𝑟 + 𝑑) ≤ (abs‘(𝑟 · 𝑧))))
232229, 231mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(𝑟 · 𝑧)) < (𝑟 + 𝑑))
233203, 232eqbrtrrd 5098 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑))
234185, 191, 187ltmuldiv2d 12820 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 · (abs‘𝑧)) < (𝑟 + 𝑑) ↔ (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟)))
235233, 234mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((𝑟 + 𝑑) / 𝑟))
236 flltp1 13520 . . . . . . . . . . . . . . . . . . . . 21 (((𝑟 + 𝑑) / 𝑟) ∈ ℝ → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
237192, 236syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((𝑟 + 𝑑) / 𝑟) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
238185, 192, 195, 235, 237lttrd 11136 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) < ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
239185, 195, 238ltled 11123 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
240183, 185, 195, 197, 239letrd 11132 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
241181zred 12426 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ ℝ)
242241, 195absled 15142 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℜ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
243240, 242mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
244194znegcld 12428 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ)
245 elfz 13245 . . . . . . . . . . . . . . . . 17 (((ℜ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
246181, 244, 194, 245syl3anc 1370 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℜ‘𝑧) ∧ (ℜ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
247243, 246mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
248179simp3bi 1146 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
249248ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℤ)
250249zcnd 12427 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℂ)
251250abscld 15148 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ∈ ℝ)
252 absimle 15021 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℂ → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
253184, 252syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ (abs‘𝑧))
254251, 185, 195, 253, 239letrd 11132 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))
255249zred 12426 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ ℝ)
256255, 195absled 15142 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((abs‘(ℑ‘𝑧)) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
257254, 256mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
258 elfz 13245 . . . . . . . . . . . . . . . . 17 (((ℑ‘𝑧) ∈ ℤ ∧ -((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ ∧ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ∈ ℤ) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
259249, 244, 194, 258syl3anc 1370 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ((ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↔ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1) ≤ (ℑ‘𝑧) ∧ (ℑ‘𝑧) ≤ ((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))))
260257, 259mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)))
261184replimd 14908 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
262261oveq2d 7291 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
263 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑎 = (ℜ‘𝑧) → (𝑎 + (i · 𝑏)) = ((ℜ‘𝑧) + (i · 𝑏)))
264263oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑎 = (ℜ‘𝑧) → (𝑟 · (𝑎 + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))))
265264eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑎 = (ℜ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏)))))
266 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (ℑ‘𝑧) → (i · 𝑏) = (i · (ℑ‘𝑧)))
267266oveq2d 7291 . . . . . . . . . . . . . . . . . 18 (𝑏 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑏)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
268267oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑏 = (ℑ‘𝑧) → (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))))
269268eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑏 = (ℑ‘𝑧) → ((𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · 𝑏))) ↔ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))))
270265, 269rspc2ev 3572 . . . . . . . . . . . . . . 15 (((ℜ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (ℑ‘𝑧) ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ∧ (𝑟 · 𝑧) = (𝑟 · ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
271247, 260, 262, 270syl3anc 1370 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) ∧ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
272271ex 413 . . . . . . . . . . . . 13 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏)))))
273171, 172elrnmpo 7410 . . . . . . . . . . . . 13 ((𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ ∃𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))∃𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1))(𝑟 · 𝑧) = (𝑟 · (𝑎 + (i · 𝑏))))
274272, 273syl6ibr 251 . . . . . . . . . . . 12 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
275156ineq1d 4145 . . . . . . . . . . . . . 14 (𝑥 = (𝑟 · 𝑧) → ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
276275neeq1d 3003 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ ↔ (((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅))
277 eleq1 2826 . . . . . . . . . . . . 13 (𝑥 = (𝑟 · 𝑧) → (𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ↔ (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))))
278276, 277imbi12d 345 . . . . . . . . . . . 12 (𝑥 = (𝑟 · 𝑧) → ((((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) ↔ ((((𝑟 · 𝑧)(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → (𝑟 · 𝑧) ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
279274, 278syl5ibrcom 246 . . . . . . . . . . 11 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑧 ∈ ℤ[i]) → (𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
280279rexlimdva 3213 . . . . . . . . . 10 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (∃𝑧 ∈ ℤ[i] 𝑥 = (𝑟 · 𝑧) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
281178, 280syl5bi 241 . . . . . . . . 9 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → (𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅ → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))))
2822813imp 1110 . . . . . . . 8 ((((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) ∧ 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∧ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅) → 𝑥 ∈ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
283282rabssdv 4008 . . . . . . 7 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))))
284 ssfi 8956 . . . . . . 7 ((ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏)))) ∈ Fin ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ⊆ ran (𝑎 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)), 𝑏 ∈ (-((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)...((⌊‘((𝑟 + 𝑑) / 𝑟)) + 1)) ↦ (𝑟 · (𝑎 + (i · 𝑏))))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
285177, 283, 284sylancr 587 . . . . . 6 (((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑑 ∈ ℝ ∧ 𝑋 ⊆ (0(ball‘(abs ∘ − ))𝑑))) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
286167, 285rexlimddv 3220 . . . . 5 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)
287 iuneq1 4940 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) = 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟))
288287sseq2d 3953 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → (𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ↔ 𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟)))
289 rabeq 3418 . . . . . . . 8 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} = {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅})
290289eleq1d 2823 . . . . . . 7 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ({𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin ↔ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
291288, 290anbi12d 631 . . . . . 6 (𝑦 = ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) → ((𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin) ↔ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
292291rspcev 3561 . . . . 5 ((ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∈ 𝒫 ℂ ∧ (𝑋 𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧))(𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥 ∈ ran (𝑧 ∈ ℤ[i] ↦ (𝑟 · 𝑧)) ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29311, 162, 286, 292syl12anc 834 . . . 4 ((𝐷 ∈ (Bnd‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
294293ralrimiva 3103 . . 3 (𝐷 ∈ (Bnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin))
29513sstotbnd3 35934 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
29612, 15, 295sylancr 587 . . 3 (𝐷 ∈ (Bnd‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) ↔ ∀𝑟 ∈ ℝ+𝑦 ∈ 𝒫 ℂ(𝑋 𝑥𝑦 (𝑥(ball‘(abs ∘ − ))𝑟) ∧ {𝑥𝑦 ∣ ((𝑥(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ≠ ∅} ∈ Fin)))
297294, 296mpbird 256 . 2 (𝐷 ∈ (Bnd‘𝑋) → 𝐷 ∈ (TotBnd‘𝑋))
2981, 297impbii 208 1 (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  ran crn 5590  cres 5591  ccom 5593   Fn wfn 6428  ontowfo 6431  cfv 6433  (class class class)co 7275  cmpo 7277  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  cz 12319  +crp 12730   +𝑒 cxad 12846  ...cfz 13239  cfl 13510  cexp 13782  cre 14808  cim 14809  abscabs 14945  ℤ[i]cgz 16630  ∞Metcxmet 20582  Metcmet 20583  ballcbl 20584  TotBndctotbnd 35924  Bndcbnd 35925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-gz 16631  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-totbnd 35926  df-bnd 35937
This theorem is referenced by:  cnpwstotbnd  35955
  Copyright terms: Public domain W3C validator