Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elimaint Structured version   Visualization version   GIF version

Theorem elimaint 43611
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
elimaint (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦,𝑎)

Proof of Theorem elimaint
StepHypRef Expression
1 vex 3448 . . 3 𝑦 ∈ V
21elima 6025 . 2 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵 𝑏 𝐴𝑦)
3 df-br 5103 . . . 4 (𝑏 𝐴𝑦 ↔ ⟨𝑏, 𝑦⟩ ∈ 𝐴)
4 opex 5419 . . . . 5 𝑏, 𝑦⟩ ∈ V
54elint2 4913 . . . 4 (⟨𝑏, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
63, 5bitri 275 . . 3 (𝑏 𝐴𝑦 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
76rexbii 3076 . 2 (∃𝑏𝐵 𝑏 𝐴𝑦 ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
82, 7bitri 275 1 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wral 3044  wrex 3053  cop 4591   cint 4906   class class class wbr 5102  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-int 4907  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  intimass  43616  intimag  43618
  Copyright terms: Public domain W3C validator