![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimaint | Structured version Visualization version GIF version |
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
elimaint | ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . 3 ⊢ 𝑦 ∈ V | |
2 | 1 | elima 6065 | . 2 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦) |
3 | df-br 5150 | . . . 4 ⊢ (𝑏∩ 𝐴𝑦 ↔ ⟨𝑏, 𝑦⟩ ∈ ∩ 𝐴) | |
4 | opex 5465 | . . . . 5 ⊢ ⟨𝑏, 𝑦⟩ ∈ V | |
5 | 4 | elint2 4958 | . . . 4 ⊢ (⟨𝑏, 𝑦⟩ ∈ ∩ 𝐴 ↔ ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
6 | 3, 5 | bitri 275 | . . 3 ⊢ (𝑏∩ 𝐴𝑦 ↔ ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
7 | 6 | rexbii 3095 | . 2 ⊢ (∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦 ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
8 | 2, 7 | bitri 275 | 1 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⟨cop 4635 ∩ cint 4951 class class class wbr 5149 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-int 4952 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: intimass 42405 intimag 42407 |
Copyright terms: Public domain | W3C validator |