![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimaint | Structured version Visualization version GIF version |
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
elimaint | ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3472 | . . 3 ⊢ 𝑦 ∈ V | |
2 | 1 | elima 6058 | . 2 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦) |
3 | df-br 5142 | . . . 4 ⊢ (𝑏∩ 𝐴𝑦 ↔ ⟨𝑏, 𝑦⟩ ∈ ∩ 𝐴) | |
4 | opex 5457 | . . . . 5 ⊢ ⟨𝑏, 𝑦⟩ ∈ V | |
5 | 4 | elint2 4950 | . . . 4 ⊢ (⟨𝑏, 𝑦⟩ ∈ ∩ 𝐴 ↔ ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
6 | 3, 5 | bitri 275 | . . 3 ⊢ (𝑏∩ 𝐴𝑦 ↔ ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
7 | 6 | rexbii 3088 | . 2 ⊢ (∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦 ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
8 | 2, 7 | bitri 275 | 1 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⟨cop 4629 ∩ cint 4943 class class class wbr 5141 “ cima 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-int 4944 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 |
This theorem is referenced by: intimass 42978 intimag 42980 |
Copyright terms: Public domain | W3C validator |