![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimaint | Structured version Visualization version GIF version |
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
elimaint | ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . 3 ⊢ 𝑦 ∈ V | |
2 | 1 | elima 6096 | . 2 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦) |
3 | df-br 5167 | . . . 4 ⊢ (𝑏∩ 𝐴𝑦 ↔ 〈𝑏, 𝑦〉 ∈ ∩ 𝐴) | |
4 | opex 5484 | . . . . 5 ⊢ 〈𝑏, 𝑦〉 ∈ V | |
5 | 4 | elint2 4977 | . . . 4 ⊢ (〈𝑏, 𝑦〉 ∈ ∩ 𝐴 ↔ ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
6 | 3, 5 | bitri 275 | . . 3 ⊢ (𝑏∩ 𝐴𝑦 ↔ ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
7 | 6 | rexbii 3100 | . 2 ⊢ (∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦 ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
8 | 2, 7 | bitri 275 | 1 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 〈cop 4654 ∩ cint 4970 class class class wbr 5166 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-int 4971 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: intimass 43618 intimag 43620 |
Copyright terms: Public domain | W3C validator |