Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elimaint Structured version   Visualization version   GIF version

Theorem elimaint 42400
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
elimaint (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦,𝑎)

Proof of Theorem elimaint
StepHypRef Expression
1 vex 3479 . . 3 𝑦 ∈ V
21elima 6065 . 2 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵 𝑏 𝐴𝑦)
3 df-br 5150 . . . 4 (𝑏 𝐴𝑦 ↔ ⟨𝑏, 𝑦⟩ ∈ 𝐴)
4 opex 5465 . . . . 5 𝑏, 𝑦⟩ ∈ V
54elint2 4958 . . . 4 (⟨𝑏, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
63, 5bitri 275 . . 3 (𝑏 𝐴𝑦 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
76rexbii 3095 . 2 (∃𝑏𝐵 𝑏 𝐴𝑦 ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
82, 7bitri 275 1 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2107  wral 3062  wrex 3071  cop 4635   cint 4951   class class class wbr 5149  cima 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-int 4952  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690
This theorem is referenced by:  intimass  42405  intimag  42407
  Copyright terms: Public domain W3C validator