Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elimaint Structured version   Visualization version   GIF version

Theorem elimaint 43624
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
elimaint (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦,𝑎)

Proof of Theorem elimaint
StepHypRef Expression
1 vex 3467 . . 3 𝑦 ∈ V
21elima 6063 . 2 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵 𝑏 𝐴𝑦)
3 df-br 5124 . . . 4 (𝑏 𝐴𝑦 ↔ ⟨𝑏, 𝑦⟩ ∈ 𝐴)
4 opex 5449 . . . . 5 𝑏, 𝑦⟩ ∈ V
54elint2 4933 . . . 4 (⟨𝑏, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
63, 5bitri 275 . . 3 (𝑏 𝐴𝑦 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
76rexbii 3082 . 2 (∃𝑏𝐵 𝑏 𝐴𝑦 ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
82, 7bitri 275 1 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  wral 3050  wrex 3059  cop 4612   cint 4926   class class class wbr 5123  cima 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-int 4927  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678
This theorem is referenced by:  intimass  43629  intimag  43631
  Copyright terms: Public domain W3C validator