| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elimaint | Structured version Visualization version GIF version | ||
| Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| elimaint | ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . 3 ⊢ 𝑦 ∈ V | |
| 2 | 1 | elima 6038 | . 2 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦) |
| 3 | df-br 5110 | . . . 4 ⊢ (𝑏∩ 𝐴𝑦 ↔ 〈𝑏, 𝑦〉 ∈ ∩ 𝐴) | |
| 4 | opex 5426 | . . . . 5 ⊢ 〈𝑏, 𝑦〉 ∈ V | |
| 5 | 4 | elint2 4919 | . . . 4 ⊢ (〈𝑏, 𝑦〉 ∈ ∩ 𝐴 ↔ ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
| 6 | 3, 5 | bitri 275 | . . 3 ⊢ (𝑏∩ 𝐴𝑦 ↔ ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
| 7 | 6 | rexbii 3077 | . 2 ⊢ (∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦 ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
| 8 | 2, 7 | bitri 275 | 1 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 〈cop 4597 ∩ cint 4912 class class class wbr 5109 “ cima 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-int 4913 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 |
| This theorem is referenced by: intimass 43636 intimag 43638 |
| Copyright terms: Public domain | W3C validator |