Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elimaint Structured version   Visualization version   GIF version

Theorem elimaint 43622
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
elimaint (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦,𝑎)

Proof of Theorem elimaint
StepHypRef Expression
1 vex 3440 . . 3 𝑦 ∈ V
21elima 6016 . 2 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵 𝑏 𝐴𝑦)
3 df-br 5093 . . . 4 (𝑏 𝐴𝑦 ↔ ⟨𝑏, 𝑦⟩ ∈ 𝐴)
4 opex 5407 . . . . 5 𝑏, 𝑦⟩ ∈ V
54elint2 4903 . . . 4 (⟨𝑏, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
63, 5bitri 275 . . 3 (𝑏 𝐴𝑦 ↔ ∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
76rexbii 3076 . 2 (∃𝑏𝐵 𝑏 𝐴𝑦 ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
82, 7bitri 275 1 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wral 3044  wrex 3053  cop 4583   cint 4896   class class class wbr 5092  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-int 4897  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  intimass  43627  intimag  43629
  Copyright terms: Public domain W3C validator