Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimaint | Structured version Visualization version GIF version |
Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
elimaint | ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3402 | . . 3 ⊢ 𝑦 ∈ V | |
2 | 1 | elima 5908 | . 2 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦) |
3 | df-br 5031 | . . . 4 ⊢ (𝑏∩ 𝐴𝑦 ↔ 〈𝑏, 𝑦〉 ∈ ∩ 𝐴) | |
4 | opex 5322 | . . . . 5 ⊢ 〈𝑏, 𝑦〉 ∈ V | |
5 | 4 | elint2 4843 | . . . 4 ⊢ (〈𝑏, 𝑦〉 ∈ ∩ 𝐴 ↔ ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
6 | 3, 5 | bitri 278 | . . 3 ⊢ (𝑏∩ 𝐴𝑦 ↔ ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
7 | 6 | rexbii 3161 | . 2 ⊢ (∃𝑏 ∈ 𝐵 𝑏∩ 𝐴𝑦 ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
8 | 2, 7 | bitri 278 | 1 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2114 ∀wral 3053 ∃wrex 3054 〈cop 4522 ∩ cint 4836 class class class wbr 5030 “ cima 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-int 4837 df-br 5031 df-opab 5093 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 |
This theorem is referenced by: intimass 40808 intimag 40810 |
Copyright terms: Public domain | W3C validator |