![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnviun | Structured version Visualization version GIF version |
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
Ref | Expression |
---|---|
cnviun | ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6113 | . 2 ⊢ Rel ◡∪ 𝑥 ∈ 𝐴 𝐵 | |
2 | reliun 5822 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel ◡𝐵) | |
3 | relcnv 6113 | . . . 4 ⊢ Rel ◡𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Rel ◡𝐵) |
5 | 2, 4 | mprgbir 3065 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
6 | vex 3477 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | vex 3477 | . . . . . 6 ⊢ 𝑧 ∈ V | |
8 | 6, 7 | opelcnv 5888 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ◡𝐵 ↔ 〈𝑧, 𝑦〉 ∈ 𝐵) |
9 | 8 | bicomi 223 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
10 | 9 | rexbii 3091 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
11 | 6, 7 | opelcnv 5888 | . . . 4 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | eliun 5004 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) | |
13 | 11, 12 | bitri 274 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) |
14 | eliun 5004 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) | |
15 | 10, 13, 14 | 3bitr4i 302 | . 2 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵) |
16 | 1, 5, 15 | eqrelriiv 5796 | 1 ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∃wrex 3067 〈cop 4638 ∪ ciun 5000 ◡ccnv 5681 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-iun 5002 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 |
This theorem is referenced by: cnvtrclfv 43185 |
Copyright terms: Public domain | W3C validator |