Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnviun Structured version   Visualization version   GIF version

Theorem cnviun 39988
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.)
Assertion
Ref Expression
cnviun 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cnviun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5962 . 2 Rel 𝑥𝐴 𝐵
2 reliun 5684 . . 3 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
3 relcnv 5962 . . . 4 Rel 𝐵
43a1i 11 . . 3 (𝑥𝐴 → Rel 𝐵)
52, 4mprgbir 3153 . 2 Rel 𝑥𝐴 𝐵
6 vex 3498 . . . . . 6 𝑦 ∈ V
7 vex 3498 . . . . . 6 𝑧 ∈ V
86, 7opelcnv 5747 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵)
98bicomi 226 . . . 4 (⟨𝑧, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵)
109rexbii 3247 . . 3 (∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
116, 7opelcnv 5747 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵)
12 eliun 4916 . . . 4 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
1311, 12bitri 277 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
14 eliun 4916 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
1510, 13, 143bitr4i 305 . 2 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
161, 5, 15eqrelriiv 5658 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  wrex 3139  cop 4567   ciun 4912  ccnv 5549  Rel wrel 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4914  df-br 5060  df-opab 5122  df-xp 5556  df-rel 5557  df-cnv 5558
This theorem is referenced by:  cnvtrclfv  40062
  Copyright terms: Public domain W3C validator