Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnviun Structured version   Visualization version   GIF version

Theorem cnviun 43621
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.)
Assertion
Ref Expression
cnviun 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cnviun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6091 . 2 Rel 𝑥𝐴 𝐵
2 reliun 5795 . . 3 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
3 relcnv 6091 . . . 4 Rel 𝐵
43a1i 11 . . 3 (𝑥𝐴 → Rel 𝐵)
52, 4mprgbir 3058 . 2 Rel 𝑥𝐴 𝐵
6 vex 3463 . . . . . 6 𝑦 ∈ V
7 vex 3463 . . . . . 6 𝑧 ∈ V
86, 7opelcnv 5861 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵)
98bicomi 224 . . . 4 (⟨𝑧, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵)
109rexbii 3083 . . 3 (∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
116, 7opelcnv 5861 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵)
12 eliun 4971 . . . 4 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
1311, 12bitri 275 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
14 eliun 4971 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
1510, 13, 143bitr4i 303 . 2 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
161, 5, 15eqrelriiv 5769 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wrex 3060  cop 4607   ciun 4967  ccnv 5653  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-iun 4969  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  cnvtrclfv  43695
  Copyright terms: Public domain W3C validator