![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnviun | Structured version Visualization version GIF version |
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
Ref | Expression |
---|---|
cnviun | ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6104 | . 2 ⊢ Rel ◡∪ 𝑥 ∈ 𝐴 𝐵 | |
2 | reliun 5817 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel ◡𝐵) | |
3 | relcnv 6104 | . . . 4 ⊢ Rel ◡𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Rel ◡𝐵) |
5 | 2, 4 | mprgbir 3066 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
6 | vex 3476 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | vex 3476 | . . . . . 6 ⊢ 𝑧 ∈ V | |
8 | 6, 7 | opelcnv 5882 | . . . . 5 ⊢ (⟨𝑦, 𝑧⟩ ∈ ◡𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵) |
9 | 8 | bicomi 223 | . . . 4 ⊢ (⟨𝑧, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ ◡𝐵) |
10 | 9 | rexbii 3092 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ⟨𝑧, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ ◡𝐵) |
11 | 6, 7 | opelcnv 5882 | . . . 4 ⊢ (⟨𝑦, 𝑧⟩ ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | eliun 5002 | . . . 4 ⊢ (⟨𝑧, 𝑦⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑧, 𝑦⟩ ∈ 𝐵) | |
13 | 11, 12 | bitri 274 | . . 3 ⊢ (⟨𝑦, 𝑧⟩ ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑧, 𝑦⟩ ∈ 𝐵) |
14 | eliun 5002 | . . 3 ⊢ (⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ ◡𝐵) | |
15 | 10, 13, 14 | 3bitr4i 302 | . 2 ⊢ (⟨𝑦, 𝑧⟩ ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵) |
16 | 1, 5, 15 | eqrelriiv 5791 | 1 ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∃wrex 3068 ⟨cop 4635 ∪ ciun 4998 ◡ccnv 5676 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-iun 5000 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 |
This theorem is referenced by: cnvtrclfv 42779 |
Copyright terms: Public domain | W3C validator |