Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnviun | Structured version Visualization version GIF version |
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
Ref | Expression |
---|---|
cnviun | ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5940 | . 2 ⊢ Rel ◡∪ 𝑥 ∈ 𝐴 𝐵 | |
2 | reliun 5659 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel ◡𝐵) | |
3 | relcnv 5940 | . . . 4 ⊢ Rel ◡𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Rel ◡𝐵) |
5 | 2, 4 | mprgbir 3086 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
6 | vex 3414 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | vex 3414 | . . . . . 6 ⊢ 𝑧 ∈ V | |
8 | 6, 7 | opelcnv 5722 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ◡𝐵 ↔ 〈𝑧, 𝑦〉 ∈ 𝐵) |
9 | 8 | bicomi 227 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
10 | 9 | rexbii 3176 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
11 | 6, 7 | opelcnv 5722 | . . . 4 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | eliun 4888 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) | |
13 | 11, 12 | bitri 278 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) |
14 | eliun 4888 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) | |
15 | 10, 13, 14 | 3bitr4i 307 | . 2 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵) |
16 | 1, 5, 15 | eqrelriiv 5633 | 1 ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 ∃wrex 3072 〈cop 4529 ∪ ciun 4884 ◡ccnv 5524 Rel wrel 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-iun 4886 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-cnv 5533 |
This theorem is referenced by: cnvtrclfv 40799 |
Copyright terms: Public domain | W3C validator |