Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnviun | Structured version Visualization version GIF version |
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
Ref | Expression |
---|---|
cnviun | ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6001 | . 2 ⊢ Rel ◡∪ 𝑥 ∈ 𝐴 𝐵 | |
2 | reliun 5715 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel ◡𝐵) | |
3 | relcnv 6001 | . . . 4 ⊢ Rel ◡𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Rel ◡𝐵) |
5 | 2, 4 | mprgbir 3078 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
6 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | vex 3426 | . . . . . 6 ⊢ 𝑧 ∈ V | |
8 | 6, 7 | opelcnv 5779 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ◡𝐵 ↔ 〈𝑧, 𝑦〉 ∈ 𝐵) |
9 | 8 | bicomi 223 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
10 | 9 | rexbii 3177 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
11 | 6, 7 | opelcnv 5779 | . . . 4 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | eliun 4925 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) | |
13 | 11, 12 | bitri 274 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) |
14 | eliun 4925 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) | |
15 | 10, 13, 14 | 3bitr4i 302 | . 2 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵) |
16 | 1, 5, 15 | eqrelriiv 5689 | 1 ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∃wrex 3064 〈cop 4564 ∪ ciun 4921 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-iun 4923 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: cnvtrclfv 41221 |
Copyright terms: Public domain | W3C validator |