![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasng | Structured version Visualization version GIF version |
Description: The image of a singleton. (Contributed by NM, 8-May-2005.) |
Ref | Expression |
---|---|
imasng | ⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3480 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | dfima2 6066 | . . 3 ⊢ (𝑅 “ {𝐴}) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} | |
3 | breq1 5152 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
4 | 3 | rexsng 4680 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) |
5 | 4 | abbidv 2794 | . . 3 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} = {𝑦 ∣ 𝐴𝑅𝑦}) |
6 | 2, 5 | eqtrid 2777 | . 2 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2702 ∃wrex 3059 Vcvv 3461 {csn 4630 class class class wbr 5149 “ cima 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 |
This theorem is referenced by: relimasn 6089 elimasng1 6091 args 6097 fnsnfv 6976 suppvalbr 8169 dfec2 8728 dfac3 10146 shftfib 15055 areacirclem5 37316 dfcoll2 43831 dfatsnafv2 46770 |
Copyright terms: Public domain | W3C validator |