MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasng Structured version   Visualization version   GIF version

Theorem imasng 5951
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem imasng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3426 . 2 (𝐴𝐵𝐴 ∈ V)
2 dfima2 5931 . . 3 (𝑅 “ {𝐴}) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦}
3 breq1 5056 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
43rexsng 4590 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝑥𝑅𝑦𝐴𝑅𝑦))
54abbidv 2807 . . 3 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} = {𝑦𝐴𝑅𝑦})
62, 5eqtrid 2789 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
71, 6syl 17 1 (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {cab 2714  wrex 3062  Vcvv 3408  {csn 4541   class class class wbr 5053  cima 5554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564
This theorem is referenced by:  relimasn  5952  elimasng1  5954  args  5960  fnsnfv  6790  suppvalbr  7907  dfec2  8394  dfac3  9735  shftfib  14635  areacirclem5  35606  dfcoll2  41543  dfatsnafv2  44416
  Copyright terms: Public domain W3C validator