MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasng Structured version   Visualization version   GIF version

Theorem imasng 5628
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem imasng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3364 . 2 (𝐴𝐵𝐴 ∈ V)
2 dfima2 5609 . . 3 (𝑅 “ {𝐴}) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦}
3 breq1 4789 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
43rexsng 4357 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝑥𝑅𝑦𝐴𝑅𝑦))
54abbidv 2890 . . 3 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} = {𝑦𝐴𝑅𝑦})
62, 5syl5eq 2817 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
71, 6syl 17 1 (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  {cab 2757  wrex 3062  Vcvv 3351  {csn 4316   class class class wbr 4786  cima 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262
This theorem is referenced by:  relimasn  5629  elimasn  5631  args  5634  suppvalbr  7450  dfec2  7899  dfac3  9144  shftfib  14020  areacirclem5  33836
  Copyright terms: Public domain W3C validator