MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasng Structured version   Visualization version   GIF version

Theorem imasng 6039
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem imasng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴𝐵𝐴 ∈ V)
2 dfima2 6017 . . 3 (𝑅 “ {𝐴}) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦}
3 breq1 5098 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
43rexsng 4630 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝑥𝑅𝑦𝐴𝑅𝑦))
54abbidv 2795 . . 3 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} = {𝑦𝐴𝑅𝑦})
62, 5eqtrid 2776 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
71, 6syl 17 1 (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3438  {csn 4579   class class class wbr 5095  cima 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  relimasn  6040  elimasng1  6042  args  6047  fnsnfv  6906  suppvalbr  8104  dfec2  8635  dfac3  10034  shftfib  14998  areacirclem5  37711  dfcoll2  44245  dfatsnafv2  47256
  Copyright terms: Public domain W3C validator