Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfom5 | Structured version Visualization version GIF version |
Description: ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
dfom5 | ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elom3 9336 | . . 3 ⊢ (𝑦 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) | |
2 | vex 3426 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | elintab 4887 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥} ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) |
4 | 1, 3 | bitr4i 277 | . 2 ⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥}) |
5 | 4 | eqriv 2735 | 1 ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∩ cint 4876 Lim wlim 6252 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |