Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfom5 | Structured version Visualization version GIF version |
Description: ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
dfom5 | ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elom3 9406 | . . 3 ⊢ (𝑦 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) | |
2 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | elintab 4890 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥} ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) |
4 | 1, 3 | bitr4i 277 | . 2 ⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥}) |
5 | 4 | eqriv 2735 | 1 ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∩ cint 4879 Lim wlim 6267 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |