MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom5 Structured version   Visualization version   GIF version

Theorem dfom5 9632
Description: ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). Theorem 1.23 of [Schloeder] p. 4. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
dfom5 ω = {𝑥 ∣ Lim 𝑥}

Proof of Theorem dfom5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elom3 9630 . . 3 (𝑦 ∈ ω ↔ ∀𝑥(Lim 𝑥𝑦𝑥))
2 vex 3479 . . . 4 𝑦 ∈ V
32elintab 4958 . . 3 (𝑦 {𝑥 ∣ Lim 𝑥} ↔ ∀𝑥(Lim 𝑥𝑦𝑥))
41, 3bitr4i 278 . 2 (𝑦 ∈ ω ↔ 𝑦 {𝑥 ∣ Lim 𝑥})
54eqriv 2730 1 ω = {𝑥 ∣ Lim 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   = wceq 1542  wcel 2107  {cab 2710   cint 4946  Lim wlim 6357  ωcom 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-un 7712  ax-inf2 9623
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-br 5145  df-opab 5207  df-tr 5262  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-om 7843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator