![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfom5 | Structured version Visualization version GIF version |
Description: ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). Theorem 1.23 of [Schloeder] p. 4. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
dfom5 | ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elom3 9692 | . . 3 ⊢ (𝑦 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) | |
2 | vex 3483 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | elintab 4964 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥} ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) |
4 | 1, 3 | bitr4i 278 | . 2 ⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥}) |
5 | 4 | eqriv 2733 | 1 ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 = wceq 1538 ∈ wcel 2107 {cab 2713 ∩ cint 4952 Lim wlim 6390 ωcom 7891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 ax-inf2 9685 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-om 7892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |