| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfom5 | Structured version Visualization version GIF version | ||
| Description: ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). Theorem 1.23 of [Schloeder] p. 4. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| dfom5 | ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elom3 9670 | . . 3 ⊢ (𝑦 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) | |
| 2 | vex 3467 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elintab 4938 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥} ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) |
| 4 | 1, 3 | bitr4i 278 | . 2 ⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥}) |
| 5 | 4 | eqriv 2731 | 1 ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2712 ∩ cint 4926 Lim wlim 6364 ωcom 7869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-om 7870 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |