| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfom5 | Structured version Visualization version GIF version | ||
| Description: ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). Theorem 1.23 of [Schloeder] p. 4. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| dfom5 | ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elom3 9619 | . . 3 ⊢ (𝑦 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) | |
| 2 | vex 3459 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elintab 4930 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥} ↔ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)) |
| 4 | 1, 3 | bitr4i 278 | . 2 ⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∩ {𝑥 ∣ Lim 𝑥}) |
| 5 | 4 | eqriv 2727 | 1 ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∩ cint 4918 Lim wlim 6341 ωcom 7850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 ax-inf2 9612 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-br 5116 df-opab 5178 df-tr 5223 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-om 7851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |