MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi2 Structured version   Visualization version   GIF version

Theorem efgi2 19587
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
Assertion
Ref Expression
efgi2 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ 𝐴 ∼ 𝐡)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑀,𝑦,𝑧   𝑛,𝑀,𝑣,𝑀   𝑛,π‘Š,𝑣,𝑀,𝑦,𝑧   𝑦, ∼ ,𝑧   𝑛,𝐼,𝑣,𝑀,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐡(𝑦,𝑧,𝑀,𝑣,𝑛)   ∼ (𝑀,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efgi2
Dummy variables π‘Ž π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . . . . . . . . 11 (π‘Ž = 𝐴 β†’ (π‘‡β€˜π‘Ž) = (π‘‡β€˜π΄))
21rneqd 5935 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ ran (π‘‡β€˜π‘Ž) = ran (π‘‡β€˜π΄))
3 eceq1 8737 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ [π‘Ž]π‘Ÿ = [𝐴]π‘Ÿ)
42, 3sseq12d 4014 . . . . . . . . 9 (π‘Ž = 𝐴 β†’ (ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ ↔ ran (π‘‡β€˜π΄) βŠ† [𝐴]π‘Ÿ))
54rspcv 3608 . . . . . . . 8 (𝐴 ∈ π‘Š β†’ (βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ β†’ ran (π‘‡β€˜π΄) βŠ† [𝐴]π‘Ÿ))
65adantr 481 . . . . . . 7 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ (βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ β†’ ran (π‘‡β€˜π΄) βŠ† [𝐴]π‘Ÿ))
7 ssel 3974 . . . . . . . . 9 (ran (π‘‡β€˜π΄) βŠ† [𝐴]π‘Ÿ β†’ (𝐡 ∈ ran (π‘‡β€˜π΄) β†’ 𝐡 ∈ [𝐴]π‘Ÿ))
87com12 32 . . . . . . . 8 (𝐡 ∈ ran (π‘‡β€˜π΄) β†’ (ran (π‘‡β€˜π΄) βŠ† [𝐴]π‘Ÿ β†’ 𝐡 ∈ [𝐴]π‘Ÿ))
9 simpl 483 . . . . . . . . . . 11 ((𝐡 ∈ [𝐴]π‘Ÿ ∧ 𝐴 ∈ π‘Š) β†’ 𝐡 ∈ [𝐴]π‘Ÿ)
10 elecg 8742 . . . . . . . . . . 11 ((𝐡 ∈ [𝐴]π‘Ÿ ∧ 𝐴 ∈ π‘Š) β†’ (𝐡 ∈ [𝐴]π‘Ÿ ↔ π΄π‘Ÿπ΅))
119, 10mpbid 231 . . . . . . . . . 10 ((𝐡 ∈ [𝐴]π‘Ÿ ∧ 𝐴 ∈ π‘Š) β†’ π΄π‘Ÿπ΅)
12 df-br 5148 . . . . . . . . . 10 (π΄π‘Ÿπ΅ ↔ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ)
1311, 12sylib 217 . . . . . . . . 9 ((𝐡 ∈ [𝐴]π‘Ÿ ∧ 𝐴 ∈ π‘Š) β†’ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ)
1413expcom 414 . . . . . . . 8 (𝐴 ∈ π‘Š β†’ (𝐡 ∈ [𝐴]π‘Ÿ β†’ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ))
158, 14sylan9r 509 . . . . . . 7 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ (ran (π‘‡β€˜π΄) βŠ† [𝐴]π‘Ÿ β†’ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ))
166, 15syld 47 . . . . . 6 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ (βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ β†’ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ))
1716adantld 491 . . . . 5 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ ((π‘Ÿ Er π‘Š ∧ βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ) β†’ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ))
1817alrimiv 1930 . . . 4 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ βˆ€π‘Ÿ((π‘Ÿ Er π‘Š ∧ βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ) β†’ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ))
19 opex 5463 . . . . 5 ⟨𝐴, 𝐡⟩ ∈ V
2019elintab 4961 . . . 4 (⟨𝐴, 𝐡⟩ ∈ ∩ {π‘Ÿ ∣ (π‘Ÿ Er π‘Š ∧ βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ)} ↔ βˆ€π‘Ÿ((π‘Ÿ Er π‘Š ∧ βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ) β†’ ⟨𝐴, 𝐡⟩ ∈ π‘Ÿ))
2118, 20sylibr 233 . . 3 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ ⟨𝐴, 𝐡⟩ ∈ ∩ {π‘Ÿ ∣ (π‘Ÿ Er π‘Š ∧ βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ)})
22 efgval.w . . . 4 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
23 efgval.r . . . 4 ∼ = ( ~FG β€˜πΌ)
24 efgval2.m . . . 4 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
25 efgval2.t . . . 4 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
2622, 23, 24, 25efgval2 19586 . . 3 ∼ = ∩ {π‘Ÿ ∣ (π‘Ÿ Er π‘Š ∧ βˆ€π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) βŠ† [π‘Ž]π‘Ÿ)}
2721, 26eleqtrrdi 2844 . 2 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ ⟨𝐴, 𝐡⟩ ∈ ∼ )
28 df-br 5148 . 2 (𝐴 ∼ 𝐡 ↔ ⟨𝐴, 𝐡⟩ ∈ ∼ )
2927, 28sylibr 233 1 ((𝐴 ∈ π‘Š ∧ 𝐡 ∈ ran (π‘‡β€˜π΄)) β†’ 𝐴 ∼ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061   βˆ– cdif 3944   βŠ† wss 3947  βŸ¨cop 4633  βŸ¨cotp 4635  βˆ© cint 4949   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673  ran crn 5676  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1oc1o 8455  2oc2o 8456   Er wer 8696  [cec 8697  0cc0 11106  ...cfz 13480  β™―chash 14286  Word cword 14460   splice csplice 14695  βŸ¨β€œcs2 14788   ~FG cefg 19568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-ec 8701  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-splice 14696  df-s2 14795  df-efg 19571
This theorem is referenced by:  efginvrel2  19589  efgsrel  19596  efgcpbllemb  19617
  Copyright terms: Public domain W3C validator