Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi2 Structured version   Visualization version   GIF version

Theorem efgi2 18582
 Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgi2 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → 𝐴 𝐵)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efgi2
Dummy variables 𝑎 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6545 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑇𝑎) = (𝑇𝐴))
21rneqd 5697 . . . . . . . . . 10 (𝑎 = 𝐴 → ran (𝑇𝑎) = ran (𝑇𝐴))
3 eceq1 8184 . . . . . . . . . 10 (𝑎 = 𝐴 → [𝑎]𝑟 = [𝐴]𝑟)
42, 3sseq12d 3927 . . . . . . . . 9 (𝑎 = 𝐴 → (ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇𝐴) ⊆ [𝐴]𝑟))
54rspcv 3557 . . . . . . . 8 (𝐴𝑊 → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 → ran (𝑇𝐴) ⊆ [𝐴]𝑟))
65adantr 481 . . . . . . 7 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 → ran (𝑇𝐴) ⊆ [𝐴]𝑟))
7 ssel 3889 . . . . . . . . 9 (ran (𝑇𝐴) ⊆ [𝐴]𝑟 → (𝐵 ∈ ran (𝑇𝐴) → 𝐵 ∈ [𝐴]𝑟))
87com12 32 . . . . . . . 8 (𝐵 ∈ ran (𝑇𝐴) → (ran (𝑇𝐴) ⊆ [𝐴]𝑟𝐵 ∈ [𝐴]𝑟))
9 simpl 483 . . . . . . . . . . 11 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → 𝐵 ∈ [𝐴]𝑟)
10 elecg 8189 . . . . . . . . . . 11 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → (𝐵 ∈ [𝐴]𝑟𝐴𝑟𝐵))
119, 10mpbid 233 . . . . . . . . . 10 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → 𝐴𝑟𝐵)
12 df-br 4969 . . . . . . . . . 10 (𝐴𝑟𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑟)
1311, 12sylib 219 . . . . . . . . 9 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → ⟨𝐴, 𝐵⟩ ∈ 𝑟)
1413expcom 414 . . . . . . . 8 (𝐴𝑊 → (𝐵 ∈ [𝐴]𝑟 → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
158, 14sylan9r 509 . . . . . . 7 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → (ran (𝑇𝐴) ⊆ [𝐴]𝑟 → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
166, 15syld 47 . . . . . 6 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
1716adantld 491 . . . . 5 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
1817alrimiv 1909 . . . 4 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
19 opex 5255 . . . . 5 𝐴, 𝐵⟩ ∈ V
2019elintab 4799 . . . 4 (⟨𝐴, 𝐵⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
2118, 20sylibr 235 . . 3 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ⟨𝐴, 𝐵⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)})
22 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
23 efgval.r . . . 4 = ( ~FG𝐼)
24 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
25 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
2622, 23, 24, 25efgval2 18581 . . 3 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
2721, 26syl6eleqr 2896 . 2 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ⟨𝐴, 𝐵⟩ ∈ )
28 df-br 4969 . 2 (𝐴 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ )
2927, 28sylibr 235 1 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → 𝐴 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396  ∀wal 1523   = wceq 1525   ∈ wcel 2083  {cab 2777  ∀wral 3107   ∖ cdif 3862   ⊆ wss 3865  ⟨cop 4484  ⟨cotp 4486  ∩ cint 4788   class class class wbr 4968   ↦ cmpt 5047   I cid 5354   × cxp 5448  ran crn 5451  ‘cfv 6232  (class class class)co 7023   ∈ cmpo 7025  1oc1o 7953  2oc2o 7954   Er wer 8143  [cec 8144  0cc0 10390  ...cfz 12746  ♯chash 13544  Word cword 13711   splice csplice 13951  ⟨“cs2 14043   ~FG cefg 18563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-ot 4487  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-ec 8148  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-fzo 12888  df-hash 13545  df-word 13712  df-concat 13773  df-s1 13798  df-substr 13843  df-pfx 13873  df-splice 13952  df-s2 14050  df-efg 18566 This theorem is referenced by:  efginvrel2  18584  efgsrel  18591  efgcpbllemb  18612
 Copyright terms: Public domain W3C validator