| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgi2 | Structured version Visualization version GIF version | ||
| Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| Ref | Expression |
|---|---|
| efgi2 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝐴 → (𝑇‘𝑎) = (𝑇‘𝐴)) | |
| 2 | 1 | rneqd 5878 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → ran (𝑇‘𝑎) = ran (𝑇‘𝐴)) |
| 3 | eceq1 8661 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → [𝑎]𝑟 = [𝐴]𝑟) | |
| 4 | 2, 3 | sseq12d 3968 | . . . . . . . . 9 ⊢ (𝑎 = 𝐴 → (ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
| 5 | 4 | rspcv 3573 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
| 7 | ssel 3928 | . . . . . . . . 9 ⊢ (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → (𝐵 ∈ ran (𝑇‘𝐴) → 𝐵 ∈ [𝐴]𝑟)) | |
| 8 | 7 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ ran (𝑇‘𝐴) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 𝐵 ∈ [𝐴]𝑟)) |
| 9 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐵 ∈ [𝐴]𝑟) | |
| 10 | elecg 8666 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑟 ↔ 𝐴𝑟𝐵)) | |
| 11 | 9, 10 | mpbid 232 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐴𝑟𝐵) |
| 12 | df-br 5092 | . . . . . . . . . 10 ⊢ (𝐴𝑟𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑟) | |
| 13 | 11, 12 | sylib 218 | . . . . . . . . 9 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ 𝑟) |
| 14 | 13 | expcom 413 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (𝐵 ∈ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
| 15 | 8, 14 | sylan9r 508 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
| 16 | 6, 15 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
| 17 | 16 | adantld 490 | . . . . 5 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
| 18 | 17 | alrimiv 1928 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
| 19 | opex 5404 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 20 | 19 | elintab 4909 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
| 21 | 18, 20 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)}) |
| 22 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 23 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 24 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 25 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 26 | 22, 23, 24, 25 | efgval2 19637 | . . 3 ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
| 27 | 21, 26 | eleqtrrdi 2842 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∼ ) |
| 28 | df-br 5092 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∼ ) | |
| 29 | 27, 28 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∖ cdif 3899 ⊆ wss 3902 〈cop 4582 〈cotp 4584 ∩ cint 4897 class class class wbr 5091 ↦ cmpt 5172 I cid 5510 × cxp 5614 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1oc1o 8378 2oc2o 8379 Er wer 8619 [cec 8620 0cc0 11006 ...cfz 13407 ♯chash 14237 Word cword 14420 splice csplice 14656 〈“cs2 14748 ~FG cefg 19619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-s2 14755 df-efg 19622 |
| This theorem is referenced by: efginvrel2 19640 efgsrel 19647 efgcpbllemb 19668 |
| Copyright terms: Public domain | W3C validator |