Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgi2 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efgi2 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6676 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝐴 → (𝑇‘𝑎) = (𝑇‘𝐴)) | |
2 | 1 | rneqd 5781 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → ran (𝑇‘𝑎) = ran (𝑇‘𝐴)) |
3 | eceq1 8360 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → [𝑎]𝑟 = [𝐴]𝑟) | |
4 | 2, 3 | sseq12d 3910 | . . . . . . . . 9 ⊢ (𝑎 = 𝐴 → (ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
5 | 4 | rspcv 3521 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
6 | 5 | adantr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
7 | ssel 3870 | . . . . . . . . 9 ⊢ (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → (𝐵 ∈ ran (𝑇‘𝐴) → 𝐵 ∈ [𝐴]𝑟)) | |
8 | 7 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ ran (𝑇‘𝐴) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 𝐵 ∈ [𝐴]𝑟)) |
9 | simpl 486 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐵 ∈ [𝐴]𝑟) | |
10 | elecg 8365 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑟 ↔ 𝐴𝑟𝐵)) | |
11 | 9, 10 | mpbid 235 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐴𝑟𝐵) |
12 | df-br 5031 | . . . . . . . . . 10 ⊢ (𝐴𝑟𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑟) | |
13 | 11, 12 | sylib 221 | . . . . . . . . 9 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ 𝑟) |
14 | 13 | expcom 417 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (𝐵 ∈ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
15 | 8, 14 | sylan9r 512 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
16 | 6, 15 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
17 | 16 | adantld 494 | . . . . 5 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
18 | 17 | alrimiv 1934 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
19 | opex 5322 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
20 | 19 | elintab 4847 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
21 | 18, 20 | sylibr 237 | . . 3 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)}) |
22 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
23 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
24 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
25 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
26 | 22, 23, 24, 25 | efgval2 18970 | . . 3 ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
27 | 21, 26 | eleqtrrdi 2844 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∼ ) |
28 | df-br 5031 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∼ ) | |
29 | 27, 28 | sylibr 237 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1540 = wceq 1542 ∈ wcel 2114 {cab 2716 ∀wral 3053 ∖ cdif 3840 ⊆ wss 3843 〈cop 4522 〈cotp 4524 ∩ cint 4836 class class class wbr 5030 ↦ cmpt 5110 I cid 5428 × cxp 5523 ran crn 5526 ‘cfv 6339 (class class class)co 7172 ∈ cmpo 7174 1oc1o 8126 2oc2o 8127 Er wer 8319 [cec 8320 0cc0 10617 ...cfz 12983 ♯chash 13784 Word cword 13957 splice csplice 14202 〈“cs2 14294 ~FG cefg 18952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-ot 4525 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-2o 8134 df-er 8322 df-ec 8324 df-map 8441 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-card 9443 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-n0 11979 df-z 12065 df-uz 12327 df-fz 12984 df-fzo 13127 df-hash 13785 df-word 13958 df-concat 14014 df-s1 14041 df-substr 14094 df-pfx 14124 df-splice 14203 df-s2 14301 df-efg 18955 |
This theorem is referenced by: efginvrel2 18973 efgsrel 18980 efgcpbllemb 19001 |
Copyright terms: Public domain | W3C validator |