![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgi2 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efgi2 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝐴 → (𝑇‘𝑎) = (𝑇‘𝐴)) | |
2 | 1 | rneqd 5963 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → ran (𝑇‘𝑎) = ran (𝑇‘𝐴)) |
3 | eceq1 8802 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → [𝑎]𝑟 = [𝐴]𝑟) | |
4 | 2, 3 | sseq12d 4042 | . . . . . . . . 9 ⊢ (𝑎 = 𝐴 → (ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
5 | 4 | rspcv 3631 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
7 | ssel 4002 | . . . . . . . . 9 ⊢ (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → (𝐵 ∈ ran (𝑇‘𝐴) → 𝐵 ∈ [𝐴]𝑟)) | |
8 | 7 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ ran (𝑇‘𝐴) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 𝐵 ∈ [𝐴]𝑟)) |
9 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐵 ∈ [𝐴]𝑟) | |
10 | elecg 8807 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑟 ↔ 𝐴𝑟𝐵)) | |
11 | 9, 10 | mpbid 232 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐴𝑟𝐵) |
12 | df-br 5167 | . . . . . . . . . 10 ⊢ (𝐴𝑟𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑟) | |
13 | 11, 12 | sylib 218 | . . . . . . . . 9 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ 𝑟) |
14 | 13 | expcom 413 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (𝐵 ∈ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
15 | 8, 14 | sylan9r 508 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
16 | 6, 15 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
17 | 16 | adantld 490 | . . . . 5 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
18 | 17 | alrimiv 1926 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
19 | opex 5484 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
20 | 19 | elintab 4982 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
21 | 18, 20 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)}) |
22 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
23 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
24 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
25 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
26 | 22, 23, 24, 25 | efgval2 19766 | . . 3 ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
27 | 21, 26 | eleqtrrdi 2855 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∼ ) |
28 | df-br 5167 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∼ ) | |
29 | 27, 28 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∖ cdif 3973 ⊆ wss 3976 〈cop 4654 〈cotp 4656 ∩ cint 4970 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 × cxp 5698 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1oc1o 8515 2oc2o 8516 Er wer 8760 [cec 8761 0cc0 11184 ...cfz 13567 ♯chash 14379 Word cword 14562 splice csplice 14797 〈“cs2 14890 ~FG cefg 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-s2 14897 df-efg 19751 |
This theorem is referenced by: efginvrel2 19769 efgsrel 19776 efgcpbllemb 19797 |
Copyright terms: Public domain | W3C validator |