![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgi2 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efgi2 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6545 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝐴 → (𝑇‘𝑎) = (𝑇‘𝐴)) | |
2 | 1 | rneqd 5697 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → ran (𝑇‘𝑎) = ran (𝑇‘𝐴)) |
3 | eceq1 8184 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → [𝑎]𝑟 = [𝐴]𝑟) | |
4 | 2, 3 | sseq12d 3927 | . . . . . . . . 9 ⊢ (𝑎 = 𝐴 → (ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
5 | 4 | rspcv 3557 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
6 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
7 | ssel 3889 | . . . . . . . . 9 ⊢ (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → (𝐵 ∈ ran (𝑇‘𝐴) → 𝐵 ∈ [𝐴]𝑟)) | |
8 | 7 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ ran (𝑇‘𝐴) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 𝐵 ∈ [𝐴]𝑟)) |
9 | simpl 483 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐵 ∈ [𝐴]𝑟) | |
10 | elecg 8189 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑟 ↔ 𝐴𝑟𝐵)) | |
11 | 9, 10 | mpbid 233 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐴𝑟𝐵) |
12 | df-br 4969 | . . . . . . . . . 10 ⊢ (𝐴𝑟𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑟) | |
13 | 11, 12 | sylib 219 | . . . . . . . . 9 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ 𝑟) |
14 | 13 | expcom 414 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (𝐵 ∈ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
15 | 8, 14 | sylan9r 509 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
16 | 6, 15 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
17 | 16 | adantld 491 | . . . . 5 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
18 | 17 | alrimiv 1909 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
19 | opex 5255 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
20 | 19 | elintab 4799 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
21 | 18, 20 | sylibr 235 | . . 3 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)}) |
22 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
23 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
24 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
25 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
26 | 22, 23, 24, 25 | efgval2 18581 | . . 3 ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
27 | 21, 26 | syl6eleqr 2896 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∼ ) |
28 | df-br 4969 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∼ ) | |
29 | 27, 28 | sylibr 235 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1523 = wceq 1525 ∈ wcel 2083 {cab 2777 ∀wral 3107 ∖ cdif 3862 ⊆ wss 3865 〈cop 4484 〈cotp 4486 ∩ cint 4788 class class class wbr 4968 ↦ cmpt 5047 I cid 5354 × cxp 5448 ran crn 5451 ‘cfv 6232 (class class class)co 7023 ∈ cmpo 7025 1oc1o 7953 2oc2o 7954 Er wer 8143 [cec 8144 0cc0 10390 ...cfz 12746 ♯chash 13544 Word cword 13711 splice csplice 13951 〈“cs2 14043 ~FG cefg 18563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-ot 4487 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-ec 8148 df-map 8265 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-fzo 12888 df-hash 13545 df-word 13712 df-concat 13773 df-s1 13798 df-substr 13843 df-pfx 13873 df-splice 13952 df-s2 14050 df-efg 18566 |
This theorem is referenced by: efginvrel2 18584 efgsrel 18591 efgcpbllemb 18612 |
Copyright terms: Public domain | W3C validator |