MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi2 Structured version   Visualization version   GIF version

Theorem efgi2 18845
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgi2 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → 𝐴 𝐵)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efgi2
Dummy variables 𝑎 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6665 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑇𝑎) = (𝑇𝐴))
21rneqd 5803 . . . . . . . . . 10 (𝑎 = 𝐴 → ran (𝑇𝑎) = ran (𝑇𝐴))
3 eceq1 8321 . . . . . . . . . 10 (𝑎 = 𝐴 → [𝑎]𝑟 = [𝐴]𝑟)
42, 3sseq12d 4000 . . . . . . . . 9 (𝑎 = 𝐴 → (ran (𝑇𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇𝐴) ⊆ [𝐴]𝑟))
54rspcv 3618 . . . . . . . 8 (𝐴𝑊 → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 → ran (𝑇𝐴) ⊆ [𝐴]𝑟))
65adantr 483 . . . . . . 7 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 → ran (𝑇𝐴) ⊆ [𝐴]𝑟))
7 ssel 3961 . . . . . . . . 9 (ran (𝑇𝐴) ⊆ [𝐴]𝑟 → (𝐵 ∈ ran (𝑇𝐴) → 𝐵 ∈ [𝐴]𝑟))
87com12 32 . . . . . . . 8 (𝐵 ∈ ran (𝑇𝐴) → (ran (𝑇𝐴) ⊆ [𝐴]𝑟𝐵 ∈ [𝐴]𝑟))
9 simpl 485 . . . . . . . . . . 11 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → 𝐵 ∈ [𝐴]𝑟)
10 elecg 8326 . . . . . . . . . . 11 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → (𝐵 ∈ [𝐴]𝑟𝐴𝑟𝐵))
119, 10mpbid 234 . . . . . . . . . 10 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → 𝐴𝑟𝐵)
12 df-br 5060 . . . . . . . . . 10 (𝐴𝑟𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑟)
1311, 12sylib 220 . . . . . . . . 9 ((𝐵 ∈ [𝐴]𝑟𝐴𝑊) → ⟨𝐴, 𝐵⟩ ∈ 𝑟)
1413expcom 416 . . . . . . . 8 (𝐴𝑊 → (𝐵 ∈ [𝐴]𝑟 → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
158, 14sylan9r 511 . . . . . . 7 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → (ran (𝑇𝐴) ⊆ [𝐴]𝑟 → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
166, 15syld 47 . . . . . 6 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → (∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟 → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
1716adantld 493 . . . . 5 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
1817alrimiv 1924 . . . 4 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
19 opex 5349 . . . . 5 𝐴, 𝐵⟩ ∈ V
2019elintab 4880 . . . 4 (⟨𝐴, 𝐵⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
2118, 20sylibr 236 . . 3 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ⟨𝐴, 𝐵⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)})
22 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
23 efgval.r . . . 4 = ( ~FG𝐼)
24 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
25 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
2622, 23, 24, 25efgval2 18844 . . 3 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎𝑊 ran (𝑇𝑎) ⊆ [𝑎]𝑟)}
2721, 26eleqtrrdi 2924 . 2 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → ⟨𝐴, 𝐵⟩ ∈ )
28 df-br 5060 . 2 (𝐴 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ )
2927, 28sylibr 236 1 ((𝐴𝑊𝐵 ∈ ran (𝑇𝐴)) → 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1531   = wceq 1533  wcel 2110  {cab 2799  wral 3138  cdif 3933  wss 3936  cop 4567  cotp 4569   cint 4869   class class class wbr 5059  cmpt 5139   I cid 5454   × cxp 5548  ran crn 5551  cfv 6350  (class class class)co 7150  cmpo 7152  1oc1o 8089  2oc2o 8090   Er wer 8280  [cec 8281  0cc0 10531  ...cfz 12886  chash 13684  Word cword 13855   splice csplice 14105  ⟨“cs2 14197   ~FG cefg 18826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-s2 14204  df-efg 18829
This theorem is referenced by:  efginvrel2  18847  efgsrel  18854  efgcpbllemb  18875
  Copyright terms: Public domain W3C validator