![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgi2 | Structured version Visualization version GIF version |
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efgi2 | ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝐴 → (𝑇‘𝑎) = (𝑇‘𝐴)) | |
2 | 1 | rneqd 5937 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → ran (𝑇‘𝑎) = ran (𝑇‘𝐴)) |
3 | eceq1 8747 | . . . . . . . . . 10 ⊢ (𝑎 = 𝐴 → [𝑎]𝑟 = [𝐴]𝑟) | |
4 | 2, 3 | sseq12d 4015 | . . . . . . . . 9 ⊢ (𝑎 = 𝐴 → (ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 ↔ ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
5 | 4 | rspcv 3608 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → ran (𝑇‘𝐴) ⊆ [𝐴]𝑟)) |
7 | ssel 3975 | . . . . . . . . 9 ⊢ (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → (𝐵 ∈ ran (𝑇‘𝐴) → 𝐵 ∈ [𝐴]𝑟)) | |
8 | 7 | com12 32 | . . . . . . . 8 ⊢ (𝐵 ∈ ran (𝑇‘𝐴) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 𝐵 ∈ [𝐴]𝑟)) |
9 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐵 ∈ [𝐴]𝑟) | |
10 | elecg 8752 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑟 ↔ 𝐴𝑟𝐵)) | |
11 | 9, 10 | mpbid 231 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 𝐴𝑟𝐵) |
12 | df-br 5149 | . . . . . . . . . 10 ⊢ (𝐴𝑟𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑟) | |
13 | 11, 12 | sylib 217 | . . . . . . . . 9 ⊢ ((𝐵 ∈ [𝐴]𝑟 ∧ 𝐴 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ 𝑟) |
14 | 13 | expcom 413 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → (𝐵 ∈ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
15 | 8, 14 | sylan9r 508 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (ran (𝑇‘𝐴) ⊆ [𝐴]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
16 | 6, 15 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → (∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟 → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
17 | 16 | adantld 490 | . . . . 5 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
18 | 17 | alrimiv 1929 | . . . 4 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
19 | opex 5464 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
20 | 19 | elintab 4962 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
21 | 18, 20 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)}) |
22 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
23 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
24 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
25 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
26 | 22, 23, 24, 25 | efgval2 19640 | . . 3 ⊢ ∼ = ∩ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑎 ∈ 𝑊 ran (𝑇‘𝑎) ⊆ [𝑎]𝑟)} |
27 | 21, 26 | eleqtrrdi 2843 | . 2 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 〈𝐴, 𝐵〉 ∈ ∼ ) |
28 | df-br 5149 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∼ ) | |
29 | 27, 28 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ ran (𝑇‘𝐴)) → 𝐴 ∼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∖ cdif 3945 ⊆ wss 3948 〈cop 4634 〈cotp 4636 ∩ cint 4950 class class class wbr 5148 ↦ cmpt 5231 I cid 5573 × cxp 5674 ran crn 5677 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 1oc1o 8465 2oc2o 8466 Er wer 8706 [cec 8707 0cc0 11116 ...cfz 13491 ♯chash 14297 Word cword 14471 splice csplice 14706 〈“cs2 14799 ~FG cefg 19622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-ec 8711 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-concat 14528 df-s1 14553 df-substr 14598 df-pfx 14628 df-splice 14707 df-s2 14806 df-efg 19625 |
This theorem is referenced by: efginvrel2 19643 efgsrel 19650 efgcpbllemb 19671 |
Copyright terms: Public domain | W3C validator |