MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfn0s2 Structured version   Visualization version   GIF version

Theorem dfn0s2 28281
Description: Alternate definition of the set of non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
dfn0s2 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfn0s2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0sno 27795 . . . . . 6 0s No
21elexi 3487 . . . . 5 0s ∈ V
32elintab 4939 . . . 4 ( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥))
4 simpl 482 . . . 4 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥)
53, 4mpgbir 1799 . . 3 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
6 oveq1 7417 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 +s 1s ) = (𝑧 +s 1s ))
76eleq1d 2820 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑧 +s 1s ) ∈ 𝑥))
87rspccv 3603 . . . . . . . 8 (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
98adantl 481 . . . . . . 7 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
109a2i 14 . . . . . 6 ((( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1110alimi 1811 . . . . 5 (∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
12 vex 3468 . . . . . 6 𝑧 ∈ V
1312elintab 4939 . . . . 5 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥))
14 ovex 7443 . . . . . 6 (𝑧 +s 1s ) ∈ V
1514elintab 4939 . . . . 5 ((𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1611, 13, 153imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
1716rgen 3054 . . 3 𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
18 peano5n0s 28269 . . 3 (( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ∧ ∀𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}) → ℕ0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
195, 17, 18mp2an 692 . 2 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
20 0n0s 28279 . . . 4 0s ∈ ℕ0s
21 peano2n0s 28280 . . . . 5 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
2221rgen 3054 . . . 4 𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s
23 n0sex 28267 . . . . 5 0s ∈ V
24 eleq2 2824 . . . . . 6 (𝑥 = ℕ0s → ( 0s𝑥 ↔ 0s ∈ ℕ0s))
25 eleq2 2824 . . . . . . 7 (𝑥 = ℕ0s → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑦 +s 1s ) ∈ ℕ0s))
2625raleqbi1dv 3321 . . . . . 6 (𝑥 = ℕ0s → (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2724, 26anbi12d 632 . . . . 5 (𝑥 = ℕ0s → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s)))
2823, 27elab 3663 . . . 4 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2920, 22, 28mpbir2an 711 . . 3 0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
30 intss1 4944 . . 3 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s)
3129, 30ax-mp 5 . 2 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s
3219, 31eqssi 3980 1 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wss 3931   cint 4927  (class class class)co 7410   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923  0scnn0s 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-dc 10465
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793  df-n0s 28265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator