MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfn0s2 Structured version   Visualization version   GIF version

Theorem dfn0s2 28247
Description: Alternate definition of the set of non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
dfn0s2 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfn0s2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0sno 27758 . . . . . 6 0s No
21elexi 3461 . . . . 5 0s ∈ V
32elintab 4911 . . . 4 ( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥))
4 simpl 482 . . . 4 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥)
53, 4mpgbir 1799 . . 3 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
6 oveq1 7360 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 +s 1s ) = (𝑧 +s 1s ))
76eleq1d 2813 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑧 +s 1s ) ∈ 𝑥))
87rspccv 3576 . . . . . . . 8 (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
98adantl 481 . . . . . . 7 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
109a2i 14 . . . . . 6 ((( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1110alimi 1811 . . . . 5 (∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
12 vex 3442 . . . . . 6 𝑧 ∈ V
1312elintab 4911 . . . . 5 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥))
14 ovex 7386 . . . . . 6 (𝑧 +s 1s ) ∈ V
1514elintab 4911 . . . . 5 ((𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1611, 13, 153imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
1716rgen 3046 . . 3 𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
18 peano5n0s 28235 . . 3 (( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ∧ ∀𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}) → ℕ0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
195, 17, 18mp2an 692 . 2 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
20 0n0s 28245 . . . 4 0s ∈ ℕ0s
21 peano2n0s 28246 . . . . 5 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
2221rgen 3046 . . . 4 𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s
23 n0sex 28233 . . . . 5 0s ∈ V
24 eleq2 2817 . . . . . 6 (𝑥 = ℕ0s → ( 0s𝑥 ↔ 0s ∈ ℕ0s))
25 eleq2 2817 . . . . . . 7 (𝑥 = ℕ0s → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑦 +s 1s ) ∈ ℕ0s))
2625raleqbi1dv 3302 . . . . . 6 (𝑥 = ℕ0s → (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2724, 26anbi12d 632 . . . . 5 (𝑥 = ℕ0s → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s)))
2823, 27elab 3637 . . . 4 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2920, 22, 28mpbir2an 711 . . 3 0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
30 intss1 4916 . . 3 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s)
3129, 30ax-mp 5 . 2 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s
3219, 31eqssi 3954 1 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wss 3905   cint 4899  (class class class)co 7353   No csur 27567   0s c0s 27754   1s c1s 27755   +s cadds 27889  0scnn0s 28229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-dc 10359
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-0s 27756  df-n0s 28231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator