MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfn0s2 Structured version   Visualization version   GIF version

Theorem dfn0s2 28270
Description: Alternate definition of the set of non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
dfn0s2 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfn0s2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0sno 27780 . . . . . 6 0s No
21elexi 3461 . . . . 5 0s ∈ V
32elintab 4911 . . . 4 ( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥))
4 simpl 482 . . . 4 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥)
53, 4mpgbir 1800 . . 3 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
6 oveq1 7362 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 +s 1s ) = (𝑧 +s 1s ))
76eleq1d 2818 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑧 +s 1s ) ∈ 𝑥))
87rspccv 3571 . . . . . . . 8 (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
98adantl 481 . . . . . . 7 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
109a2i 14 . . . . . 6 ((( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1110alimi 1812 . . . . 5 (∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
12 vex 3442 . . . . . 6 𝑧 ∈ V
1312elintab 4911 . . . . 5 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥))
14 ovex 7388 . . . . . 6 (𝑧 +s 1s ) ∈ V
1514elintab 4911 . . . . 5 ((𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1611, 13, 153imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
1716rgen 3051 . . 3 𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
18 peano5n0s 28258 . . 3 (( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ∧ ∀𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}) → ℕ0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
195, 17, 18mp2an 692 . 2 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
20 0n0s 28268 . . . 4 0s ∈ ℕ0s
21 peano2n0s 28269 . . . . 5 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
2221rgen 3051 . . . 4 𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s
23 n0sex 28256 . . . . 5 0s ∈ V
24 eleq2 2822 . . . . . 6 (𝑥 = ℕ0s → ( 0s𝑥 ↔ 0s ∈ ℕ0s))
25 eleq2 2822 . . . . . . 7 (𝑥 = ℕ0s → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑦 +s 1s ) ∈ ℕ0s))
2625raleqbi1dv 3306 . . . . . 6 (𝑥 = ℕ0s → (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2724, 26anbi12d 632 . . . . 5 (𝑥 = ℕ0s → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s)))
2823, 27elab 3632 . . . 4 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2920, 22, 28mpbir2an 711 . . 3 0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
30 intss1 4915 . . 3 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s)
3129, 30ax-mp 5 . 2 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s
3219, 31eqssi 3948 1 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3049  wss 3899   cint 4899  (class class class)co 7355   No csur 27588   0s c0s 27776   1s c1s 27777   +s cadds 27912  0scnn0s 28252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-dc 10347
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-no 27591  df-slt 27592  df-bday 27593  df-sslt 27731  df-scut 27733  df-0s 27778  df-n0s 28254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator