Step | Hyp | Ref
| Expression |
1 | | 0sno 27564 |
. . . . . 6
⊢
0s ∈ No |
2 | 1 | elexi 3492 |
. . . . 5
⊢
0s ∈ V |
3 | 2 | elintab 4961 |
. . . 4
⊢ (
0s ∈ ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s ∈
𝑥)) |
4 | | simpl 481 |
. . . 4
⊢ ((
0s ∈ 𝑥
∧ ∀𝑦 ∈
𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s ∈
𝑥) |
5 | 3, 4 | mpgbir 1799 |
. . 3
⊢
0s ∈ ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} |
6 | | oveq1 7418 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 +s 1s ) = (𝑧 +s 1s
)) |
7 | 6 | eleq1d 2816 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑧 +s 1s ) ∈ 𝑥)) |
8 | 7 | rspccv 3608 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 (𝑦 +s 1s ) ∈ 𝑥 → (𝑧 ∈ 𝑥 → (𝑧 +s 1s ) ∈ 𝑥)) |
9 | 8 | adantl 480 |
. . . . . . 7
⊢ ((
0s ∈ 𝑥
∧ ∀𝑦 ∈
𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 ∈ 𝑥 → (𝑧 +s 1s ) ∈ 𝑥)) |
10 | 9 | a2i 14 |
. . . . . 6
⊢ (((
0s ∈ 𝑥
∧ ∀𝑦 ∈
𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧 ∈ 𝑥) → (( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥)) |
11 | 10 | alimi 1811 |
. . . . 5
⊢
(∀𝑥((
0s ∈ 𝑥
∧ ∀𝑦 ∈
𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧 ∈ 𝑥) → ∀𝑥(( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥)) |
12 | | vex 3476 |
. . . . . 6
⊢ 𝑧 ∈ V |
13 | 12 | elintab 4961 |
. . . . 5
⊢ (𝑧 ∈ ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
14 | | ovex 7444 |
. . . . . 6
⊢ (𝑧 +s 1s )
∈ V |
15 | 14 | elintab 4961 |
. . . . 5
⊢ ((𝑧 +s 1s )
∈ ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥)) |
16 | 11, 13, 15 | 3imtr4i 291 |
. . . 4
⊢ (𝑧 ∈ ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → (𝑧 +s 1s ) ∈ ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)}) |
17 | 16 | rgen 3061 |
. . 3
⊢
∀𝑧 ∈
∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} |
18 | | peano5n0s 27935 |
. . 3
⊢ ((
0s ∈ ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ∧ ∀𝑧 ∈ ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)}) → ℕ0s
⊆ ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)}) |
19 | 5, 17, 18 | mp2an 688 |
. 2
⊢
ℕ0s ⊆ ∩ {𝑥 ∣ ( 0s ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} |
20 | | 0n0s 27939 |
. . . 4
⊢
0s ∈ ℕ0s |
21 | | peano2n0s 27940 |
. . . . 5
⊢ (𝑦 ∈ ℕ0s
→ (𝑦 +s
1s ) ∈ ℕ0s) |
22 | 21 | rgen 3061 |
. . . 4
⊢
∀𝑦 ∈
ℕ0s (𝑦
+s 1s ) ∈ ℕ0s |
23 | | n0sex 27933 |
. . . . 5
⊢
ℕ0s ∈ V |
24 | | eleq2 2820 |
. . . . . 6
⊢ (𝑥 = ℕ0s → (
0s ∈ 𝑥
↔ 0s ∈ ℕ0s)) |
25 | | eleq2 2820 |
. . . . . . 7
⊢ (𝑥 = ℕ0s →
((𝑦 +s
1s ) ∈ 𝑥
↔ (𝑦 +s
1s ) ∈ ℕ0s)) |
26 | 25 | raleqbi1dv 3331 |
. . . . . 6
⊢ (𝑥 = ℕ0s →
(∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ0s
(𝑦 +s
1s ) ∈ ℕ0s)) |
27 | 24, 26 | anbi12d 629 |
. . . . 5
⊢ (𝑥 = ℕ0s →
(( 0s ∈ 𝑥
∧ ∀𝑦 ∈
𝑥 (𝑦 +s 1s ) ∈ 𝑥) ↔ ( 0s ∈
ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s )
∈ ℕ0s))) |
28 | 23, 27 | elab 3667 |
. . . 4
⊢
(ℕ0s ∈ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ( 0s ∈
ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s )
∈ ℕ0s)) |
29 | 20, 22, 28 | mpbir2an 707 |
. . 3
⊢
ℕ0s ∈ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} |
30 | | intss1 4966 |
. . 3
⊢
(ℕ0s ∈ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆
ℕ0s) |
31 | 29, 30 | ax-mp 5 |
. 2
⊢ ∩ {𝑥
∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆
ℕ0s |
32 | 19, 31 | eqssi 3997 |
1
⊢
ℕ0s = ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} |