MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfn0s2 Structured version   Visualization version   GIF version

Theorem dfn0s2 28354
Description: Alternate definition of the set of non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
dfn0s2 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfn0s2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0sno 27889 . . . . . 6 0s No
21elexi 3511 . . . . 5 0s ∈ V
32elintab 4982 . . . 4 ( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥))
4 simpl 482 . . . 4 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 0s𝑥)
53, 4mpgbir 1797 . . 3 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
6 oveq1 7455 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 +s 1s ) = (𝑧 +s 1s ))
76eleq1d 2829 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑧 +s 1s ) ∈ 𝑥))
87rspccv 3632 . . . . . . . 8 (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
98adantl 481 . . . . . . 7 (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧𝑥 → (𝑧 +s 1s ) ∈ 𝑥))
109a2i 14 . . . . . 6 ((( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1110alimi 1809 . . . . 5 (∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥) → ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
12 vex 3492 . . . . . 6 𝑧 ∈ V
1312elintab 4982 . . . . 5 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → 𝑧𝑥))
14 ovex 7481 . . . . . 6 (𝑧 +s 1s ) ∈ V
1514elintab 4982 . . . . 5 ((𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ∀𝑥(( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) → (𝑧 +s 1s ) ∈ 𝑥))
1611, 13, 153imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
1716rgen 3069 . . 3 𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
18 peano5n0s 28342 . . 3 (( 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ∧ ∀𝑧 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} (𝑧 +s 1s ) ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}) → ℕ0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)})
195, 17, 18mp2an 691 . 2 0s {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
20 0n0s 28352 . . . 4 0s ∈ ℕ0s
21 peano2n0s 28353 . . . . 5 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
2221rgen 3069 . . . 4 𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s
23 n0sex 28340 . . . . 5 0s ∈ V
24 eleq2 2833 . . . . . 6 (𝑥 = ℕ0s → ( 0s𝑥 ↔ 0s ∈ ℕ0s))
25 eleq2 2833 . . . . . . 7 (𝑥 = ℕ0s → ((𝑦 +s 1s ) ∈ 𝑥 ↔ (𝑦 +s 1s ) ∈ ℕ0s))
2625raleqbi1dv 3346 . . . . . 6 (𝑥 = ℕ0s → (∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2724, 26anbi12d 631 . . . . 5 (𝑥 = ℕ0s → (( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥) ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s)))
2823, 27elab 3694 . . . 4 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ↔ ( 0s ∈ ℕ0s ∧ ∀𝑦 ∈ ℕ0s (𝑦 +s 1s ) ∈ ℕ0s))
2920, 22, 28mpbir2an 710 . . 3 0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
30 intss1 4987 . . 3 (ℕ0s ∈ {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} → {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s)
3129, 30ax-mp 5 . 2 {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)} ⊆ ℕ0s
3219, 31eqssi 4025 1 0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wss 3976   cint 4970  (class class class)co 7448   No csur 27702   0s c0s 27885   1s c1s 27886   +s cadds 28010  0scnn0s 28336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-n0s 28338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator