MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphg Structured version   Visualization version   GIF version

Theorem isphg 30803
Description: The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, and the norm is 𝑁. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
isphg.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isphg ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem isphg
Dummy variables 𝑔 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ph 30799 . . 3 CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
21elin2 4183 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}))
3 rneq 5921 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
4 isphg.1 . . . . . 6 𝑋 = ran 𝐺
53, 4eqtr4di 2789 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
6 oveq 7416 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
76fveq2d 6885 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔𝑦)) = (𝑛‘(𝑥𝐺𝑦)))
87oveq1d 7425 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔𝑦))↑2) = ((𝑛‘(𝑥𝐺𝑦))↑2))
9 oveq 7416 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔(-1𝑠𝑦)) = (𝑥𝐺(-1𝑠𝑦)))
109fveq2d 6885 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑠𝑦))))
1110oveq1d 7425 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2))
128, 11oveq12d 7428 . . . . . . 7 (𝑔 = 𝐺 → (((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)))
1312eqeq1d 2738 . . . . . 6 (𝑔 = 𝐺 → ((((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
145, 13raleqbidv 3329 . . . . 5 (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
155, 14raleqbidv 3329 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
16 oveq 7416 . . . . . . . . . 10 (𝑠 = 𝑆 → (-1𝑠𝑦) = (-1𝑆𝑦))
1716oveq2d 7426 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑥𝐺(-1𝑠𝑦)) = (𝑥𝐺(-1𝑆𝑦)))
1817fveq2d 6885 . . . . . . . 8 (𝑠 = 𝑆 → (𝑛‘(𝑥𝐺(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑆𝑦))))
1918oveq1d 7425 . . . . . . 7 (𝑠 = 𝑆 → ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2))
2019oveq2d 7426 . . . . . 6 (𝑠 = 𝑆 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)))
2120eqeq1d 2738 . . . . 5 (𝑠 = 𝑆 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
22212ralbidv 3209 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
23 fveq1 6880 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺𝑦)) = (𝑁‘(𝑥𝐺𝑦)))
2423oveq1d 7425 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝑥𝐺𝑦))↑2))
25 fveq1 6880 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
2625oveq1d 7425 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2))
2724, 26oveq12d 7428 . . . . . 6 (𝑛 = 𝑁 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)))
28 fveq1 6880 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛𝑥) = (𝑁𝑥))
2928oveq1d 7425 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑛𝑥)↑2) = ((𝑁𝑥)↑2))
30 fveq1 6880 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛𝑦) = (𝑁𝑦))
3130oveq1d 7425 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑛𝑦)↑2) = ((𝑁𝑦)↑2))
3229, 31oveq12d 7428 . . . . . . 7 (𝑛 = 𝑁 → (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)) = (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))
3332oveq2d 7426 . . . . . 6 (𝑛 = 𝑁 → (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
3427, 33eqeq12d 2752 . . . . 5 (𝑛 = 𝑁 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
35342ralbidv 3209 . . . 4 (𝑛 = 𝑁 → (∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
3615, 22, 35eloprabg 7522 . . 3 ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))} ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
3736anbi2d 630 . 2 ((𝐺𝐴𝑆𝐵𝑁𝐶) → ((⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}) ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
382, 37bitrid 283 1 ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cop 4612  ran crn 5660  cfv 6536  (class class class)co 7410  {coprab 7411  1c1 11135   + caddc 11137   · cmul 11139  -cneg 11472  2c2 12300  cexp 14084  NrmCVeccnv 30570  CPreHilOLDccphlo 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-cnv 5667  df-dm 5669  df-rn 5670  df-iota 6489  df-fv 6544  df-ov 7413  df-oprab 7414  df-ph 30799
This theorem is referenced by:  cncph  30805  isph  30808  phpar  30810  hhph  31164
  Copyright terms: Public domain W3C validator