| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ph 30832 | . . 3
⊢
CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | 
| 2 | 1 | elin2 4203 | . 2
⊢
(〈〈𝐺,
𝑆〉, 𝑁〉 ∈ CPreHilOLD ↔
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧
〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))})) | 
| 3 |  | rneq 5947 | . . . . . 6
⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | 
| 4 |  | isphg.1 | . . . . . 6
⊢ 𝑋 = ran 𝐺 | 
| 5 | 3, 4 | eqtr4di 2795 | . . . . 5
⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) | 
| 6 |  | oveq 7437 | . . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) | 
| 7 | 6 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔𝑦)) = (𝑛‘(𝑥𝐺𝑦))) | 
| 8 | 7 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔𝑦))↑2) = ((𝑛‘(𝑥𝐺𝑦))↑2)) | 
| 9 |  | oveq 7437 | . . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥𝑔(-1𝑠𝑦)) = (𝑥𝐺(-1𝑠𝑦))) | 
| 10 | 9 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑠𝑦)))) | 
| 11 | 10 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) | 
| 12 | 8, 11 | oveq12d 7449 | . . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2))) | 
| 13 | 12 | eqeq1d 2739 | . . . . . 6
⊢ (𝑔 = 𝐺 → ((((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) | 
| 14 | 5, 13 | raleqbidv 3346 | . . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) | 
| 15 | 5, 14 | raleqbidv 3346 | . . . 4
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) | 
| 16 |  | oveq 7437 | . . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (-1𝑠𝑦) = (-1𝑆𝑦)) | 
| 17 | 16 | oveq2d 7447 | . . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑥𝐺(-1𝑠𝑦)) = (𝑥𝐺(-1𝑆𝑦))) | 
| 18 | 17 | fveq2d 6910 | . . . . . . . 8
⊢ (𝑠 = 𝑆 → (𝑛‘(𝑥𝐺(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑆𝑦)))) | 
| 19 | 18 | oveq1d 7446 | . . . . . . 7
⊢ (𝑠 = 𝑆 → ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) | 
| 20 | 19 | oveq2d 7447 | . . . . . 6
⊢ (𝑠 = 𝑆 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2))) | 
| 21 | 20 | eqeq1d 2739 | . . . . 5
⊢ (𝑠 = 𝑆 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) | 
| 22 | 21 | 2ralbidv 3221 | . . . 4
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) | 
| 23 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺𝑦)) = (𝑁‘(𝑥𝐺𝑦))) | 
| 24 | 23 | oveq1d 7446 | . . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝑥𝐺𝑦))↑2)) | 
| 25 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦)))) | 
| 26 | 25 | oveq1d 7446 | . . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) | 
| 27 | 24, 26 | oveq12d 7449 | . . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2))) | 
| 28 |  | fveq1 6905 | . . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑛‘𝑥) = (𝑁‘𝑥)) | 
| 29 | 28 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑛 = 𝑁 → ((𝑛‘𝑥)↑2) = ((𝑁‘𝑥)↑2)) | 
| 30 |  | fveq1 6905 | . . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑛‘𝑦) = (𝑁‘𝑦)) | 
| 31 | 30 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑛 = 𝑁 → ((𝑛‘𝑦)↑2) = ((𝑁‘𝑦)↑2)) | 
| 32 | 29, 31 | oveq12d 7449 | . . . . . . 7
⊢ (𝑛 = 𝑁 → (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)) = (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))) | 
| 33 | 32 | oveq2d 7447 | . . . . . 6
⊢ (𝑛 = 𝑁 → (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))) | 
| 34 | 27, 33 | eqeq12d 2753 | . . . . 5
⊢ (𝑛 = 𝑁 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) | 
| 35 | 34 | 2ralbidv 3221 | . . . 4
⊢ (𝑛 = 𝑁 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) | 
| 36 | 15, 22, 35 | eloprabg 7543 | . . 3
⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))} ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) | 
| 37 | 36 | anbi2d 630 | . 2
⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → ((〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧
〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ↔ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))))) | 
| 38 | 2, 37 | bitrid 283 | 1
⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ CPreHilOLD ↔
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))))) |