Step | Hyp | Ref
| Expression |
1 | | df-ph 29076 |
. . 3
⊢
CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) |
2 | 1 | elin2 4127 |
. 2
⊢
(〈〈𝐺,
𝑆〉, 𝑁〉 ∈ CPreHilOLD ↔
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧
〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))})) |
3 | | rneq 5834 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) |
4 | | isphg.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
5 | 3, 4 | eqtr4di 2797 |
. . . . 5
⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
6 | | oveq 7261 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) |
7 | 6 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔𝑦)) = (𝑛‘(𝑥𝐺𝑦))) |
8 | 7 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔𝑦))↑2) = ((𝑛‘(𝑥𝐺𝑦))↑2)) |
9 | | oveq 7261 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥𝑔(-1𝑠𝑦)) = (𝑥𝐺(-1𝑠𝑦))) |
10 | 9 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑠𝑦)))) |
11 | 10 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) |
12 | 8, 11 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2))) |
13 | 12 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) |
14 | 5, 13 | raleqbidv 3327 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) |
15 | 5, 14 | raleqbidv 3327 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) |
16 | | oveq 7261 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (-1𝑠𝑦) = (-1𝑆𝑦)) |
17 | 16 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑥𝐺(-1𝑠𝑦)) = (𝑥𝐺(-1𝑆𝑦))) |
18 | 17 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (𝑛‘(𝑥𝐺(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑆𝑦)))) |
19 | 18 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) |
20 | 19 | oveq2d 7271 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2))) |
21 | 20 | eqeq1d 2740 |
. . . . 5
⊢ (𝑠 = 𝑆 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) |
22 | 21 | 2ralbidv 3122 |
. . . 4
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))))) |
23 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺𝑦)) = (𝑁‘(𝑥𝐺𝑦))) |
24 | 23 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝑥𝐺𝑦))↑2)) |
25 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦)))) |
26 | 25 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) |
27 | 24, 26 | oveq12d 7273 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2))) |
28 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑛‘𝑥) = (𝑁‘𝑥)) |
29 | 28 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((𝑛‘𝑥)↑2) = ((𝑁‘𝑥)↑2)) |
30 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑛‘𝑦) = (𝑁‘𝑦)) |
31 | 30 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((𝑛‘𝑦)↑2) = ((𝑁‘𝑦)↑2)) |
32 | 29, 31 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)) = (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))) |
33 | 32 | oveq2d 7271 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))) |
34 | 27, 33 | eqeq12d 2754 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) |
35 | 34 | 2ralbidv 3122 |
. . . 4
⊢ (𝑛 = 𝑁 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) |
36 | 15, 22, 35 | eloprabg 7362 |
. . 3
⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))} ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) |
37 | 36 | anbi2d 628 |
. 2
⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → ((〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧
〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ↔ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))))) |
38 | 2, 37 | syl5bb 282 |
1
⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ CPreHilOLD ↔
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))))) |