MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphg Structured version   Visualization version   GIF version

Theorem isphg 29080
Description: The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, and the norm is 𝑁. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
isphg.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isphg ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem isphg
Dummy variables 𝑔 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ph 29076 . . 3 CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
21elin2 4127 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}))
3 rneq 5834 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
4 isphg.1 . . . . . 6 𝑋 = ran 𝐺
53, 4eqtr4di 2797 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
6 oveq 7261 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
76fveq2d 6760 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔𝑦)) = (𝑛‘(𝑥𝐺𝑦)))
87oveq1d 7270 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔𝑦))↑2) = ((𝑛‘(𝑥𝐺𝑦))↑2))
9 oveq 7261 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔(-1𝑠𝑦)) = (𝑥𝐺(-1𝑠𝑦)))
109fveq2d 6760 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑠𝑦))))
1110oveq1d 7270 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2))
128, 11oveq12d 7273 . . . . . . 7 (𝑔 = 𝐺 → (((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)))
1312eqeq1d 2740 . . . . . 6 (𝑔 = 𝐺 → ((((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
145, 13raleqbidv 3327 . . . . 5 (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
155, 14raleqbidv 3327 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
16 oveq 7261 . . . . . . . . . 10 (𝑠 = 𝑆 → (-1𝑠𝑦) = (-1𝑆𝑦))
1716oveq2d 7271 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑥𝐺(-1𝑠𝑦)) = (𝑥𝐺(-1𝑆𝑦)))
1817fveq2d 6760 . . . . . . . 8 (𝑠 = 𝑆 → (𝑛‘(𝑥𝐺(-1𝑠𝑦))) = (𝑛‘(𝑥𝐺(-1𝑆𝑦))))
1918oveq1d 7270 . . . . . . 7 (𝑠 = 𝑆 → ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2) = ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2))
2019oveq2d 7271 . . . . . 6 (𝑠 = 𝑆 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)))
2120eqeq1d 2740 . . . . 5 (𝑠 = 𝑆 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
22212ralbidv 3122 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))))
23 fveq1 6755 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺𝑦)) = (𝑁‘(𝑥𝐺𝑦)))
2423oveq1d 7270 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝑥𝐺𝑦))↑2))
25 fveq1 6755 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
2625oveq1d 7270 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2))
2724, 26oveq12d 7273 . . . . . 6 (𝑛 = 𝑁 → (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)))
28 fveq1 6755 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛𝑥) = (𝑁𝑥))
2928oveq1d 7270 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑛𝑥)↑2) = ((𝑁𝑥)↑2))
30 fveq1 6755 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛𝑦) = (𝑁𝑦))
3130oveq1d 7270 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑛𝑦)↑2) = ((𝑁𝑦)↑2))
3229, 31oveq12d 7273 . . . . . . 7 (𝑛 = 𝑁 → (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)) = (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))
3332oveq2d 7271 . . . . . 6 (𝑛 = 𝑁 → (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
3427, 33eqeq12d 2754 . . . . 5 (𝑛 = 𝑁 → ((((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
35342ralbidv 3122 . . . 4 (𝑛 = 𝑁 → (∀𝑥𝑋𝑦𝑋 (((𝑛‘(𝑥𝐺𝑦))↑2) + ((𝑛‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
3615, 22, 35eloprabg 7362 . . 3 ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))} ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
3736anbi2d 628 . 2 ((𝐺𝐴𝑆𝐵𝑁𝐶) → ((⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}) ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
382, 37syl5bb 282 1 ((𝐺𝐴𝑆𝐵𝑁𝐶) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cop 4564  ran crn 5581  cfv 6418  (class class class)co 7255  {coprab 7256  1c1 10803   + caddc 10805   · cmul 10807  -cneg 11136  2c2 11958  cexp 13710  NrmCVeccnv 28847  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-iota 6376  df-fv 6426  df-ov 7258  df-oprab 7259  df-ph 29076
This theorem is referenced by:  cncph  29082  isph  29085  phpar  29087  hhph  29441
  Copyright terms: Public domain W3C validator