Step | Hyp | Ref
| Expression |
1 | | df-nv 28855 |
. . 3
⊢ NrmCVec =
{〈〈𝑔, 𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))} |
2 | 1 | eleq2i 2830 |
. 2
⊢
(〈〈𝐺,
𝑆〉, 𝑁〉 ∈ NrmCVec ↔
〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))}) |
3 | | opeq1 4801 |
. . . . 5
⊢ (𝑔 = 𝐺 → 〈𝑔, 𝑠〉 = 〈𝐺, 𝑠〉) |
4 | 3 | eleq1d 2823 |
. . . 4
⊢ (𝑔 = 𝐺 → (〈𝑔, 𝑠〉 ∈ CVecOLD ↔
〈𝐺, 𝑠〉 ∈
CVecOLD)) |
5 | | rneq 5834 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) |
6 | | isnvlem.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
7 | 5, 6 | eqtr4di 2797 |
. . . . 5
⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
8 | 7 | feq2d 6570 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑛:ran 𝑔⟶ℝ ↔ 𝑛:𝑋⟶ℝ)) |
9 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺)) |
10 | | isnvlem.2 |
. . . . . . . . 9
⊢ 𝑍 = (GId‘𝐺) |
11 | 9, 10 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (GId‘𝑔) = 𝑍) |
12 | 11 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑥 = (GId‘𝑔) ↔ 𝑥 = 𝑍)) |
13 | 12 | imbi2d 340 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ↔ ((𝑛‘𝑥) = 0 → 𝑥 = 𝑍))) |
14 | | oveq 7261 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) |
15 | 14 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔𝑦)) = (𝑛‘(𝑥𝐺𝑦))) |
16 | 15 | breq1d 5080 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)) ↔ (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))) |
17 | 7, 16 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))) |
18 | 13, 17 | 3anbi13d 1436 |
. . . . 5
⊢ (𝑔 = 𝐺 → ((((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))) ↔ (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))) |
19 | 7, 18 | raleqbidv 3327 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))) ↔ ∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))) |
20 | 4, 8, 19 | 3anbi123d 1434 |
. . 3
⊢ (𝑔 = 𝐺 → ((〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))) ↔ (〈𝐺, 𝑠〉 ∈ CVecOLD ∧ 𝑛:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))))) |
21 | | opeq2 4802 |
. . . . 5
⊢ (𝑠 = 𝑆 → 〈𝐺, 𝑠〉 = 〈𝐺, 𝑆〉) |
22 | 21 | eleq1d 2823 |
. . . 4
⊢ (𝑠 = 𝑆 → (〈𝐺, 𝑠〉 ∈ CVecOLD ↔
〈𝐺, 𝑆〉 ∈
CVecOLD)) |
23 | | oveq 7261 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (𝑦𝑠𝑥) = (𝑦𝑆𝑥)) |
24 | 23 | fveqeq2d 6764 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ↔ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)))) |
25 | 24 | ralbidv 3120 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ↔ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)))) |
26 | 25 | 3anbi2d 1439 |
. . . . 5
⊢ (𝑠 = 𝑆 → ((((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))) ↔ (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))) |
27 | 26 | ralbidv 3120 |
. . . 4
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))) ↔ ∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))) |
28 | 22, 27 | 3anbi13d 1436 |
. . 3
⊢ (𝑠 = 𝑆 → ((〈𝐺, 𝑠〉 ∈ CVecOLD ∧ 𝑛:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))) ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑛:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))))) |
29 | | feq1 6565 |
. . . 4
⊢ (𝑛 = 𝑁 → (𝑛:𝑋⟶ℝ ↔ 𝑁:𝑋⟶ℝ)) |
30 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛‘𝑥) = (𝑁‘𝑥)) |
31 | 30 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛‘𝑥) = 0 ↔ (𝑁‘𝑥) = 0)) |
32 | 31 | imbi1d 341 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍))) |
33 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝑥))) |
34 | 30 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((abs‘𝑦) · (𝑛‘𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
35 | 33, 34 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ↔ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)))) |
36 | 35 | ralbidv 3120 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ↔ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)))) |
37 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺𝑦)) = (𝑁‘(𝑥𝐺𝑦))) |
38 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑛‘𝑦) = (𝑁‘𝑦)) |
39 | 30, 38 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((𝑛‘𝑥) + (𝑛‘𝑦)) = ((𝑁‘𝑥) + (𝑁‘𝑦))) |
40 | 37, 39 | breq12d 5083 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)) ↔ (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
41 | 40 | ralbidv 3120 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
42 | 32, 36, 41 | 3anbi123d 1434 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))) ↔ (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
43 | 42 | ralbidv 3120 |
. . . 4
⊢ (𝑛 = 𝑁 → (∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))) ↔ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
44 | 29, 43 | 3anbi23d 1437 |
. . 3
⊢ (𝑛 = 𝑁 → ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑛:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑛‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))) ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |
45 | 20, 28, 44 | eloprabg 7362 |
. 2
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) →
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))} ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |
46 | 2, 45 | syl5bb 282 |
1
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) →
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |