MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvlem Structured version   Visualization version   GIF version

Theorem isnvlem 30639
Description: Lemma for isnv 30641. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvlem.1 𝑋 = ran 𝐺
isnvlem.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isnvlem ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem isnvlem
Dummy variables 𝑔 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nv 30621 . . 3 NrmCVec = {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))}
21eleq2i 2831 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))})
3 opeq1 4878 . . . . 5 (𝑔 = 𝐺 → ⟨𝑔, 𝑠⟩ = ⟨𝐺, 𝑠⟩)
43eleq1d 2824 . . . 4 (𝑔 = 𝐺 → (⟨𝑔, 𝑠⟩ ∈ CVecOLD ↔ ⟨𝐺, 𝑠⟩ ∈ CVecOLD))
5 rneq 5950 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
6 isnvlem.1 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2793 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
87feq2d 6723 . . . 4 (𝑔 = 𝐺 → (𝑛:ran 𝑔⟶ℝ ↔ 𝑛:𝑋⟶ℝ))
9 fveq2 6907 . . . . . . . . 9 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
10 isnvlem.2 . . . . . . . . 9 𝑍 = (GId‘𝐺)
119, 10eqtr4di 2793 . . . . . . . 8 (𝑔 = 𝐺 → (GId‘𝑔) = 𝑍)
1211eqeq2d 2746 . . . . . . 7 (𝑔 = 𝐺 → (𝑥 = (GId‘𝑔) ↔ 𝑥 = 𝑍))
1312imbi2d 340 . . . . . 6 (𝑔 = 𝐺 → (((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ↔ ((𝑛𝑥) = 0 → 𝑥 = 𝑍)))
14 oveq 7437 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
1514fveq2d 6911 . . . . . . . 8 (𝑔 = 𝐺 → (𝑛‘(𝑥𝑔𝑦)) = (𝑛‘(𝑥𝐺𝑦)))
1615breq1d 5158 . . . . . . 7 (𝑔 = 𝐺 → ((𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)) ↔ (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))
177, 16raleqbidv 3344 . . . . . 6 (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)) ↔ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))
1813, 173anbi13d 1437 . . . . 5 (𝑔 = 𝐺 → ((((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))) ↔ (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))
197, 18raleqbidv 3344 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))) ↔ ∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))
204, 8, 193anbi123d 1435 . . 3 (𝑔 = 𝐺 → ((⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))) ↔ (⟨𝐺, 𝑠⟩ ∈ CVecOLD𝑛:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))))
21 opeq2 4879 . . . . 5 (𝑠 = 𝑆 → ⟨𝐺, 𝑠⟩ = ⟨𝐺, 𝑆⟩)
2221eleq1d 2824 . . . 4 (𝑠 = 𝑆 → (⟨𝐺, 𝑠⟩ ∈ CVecOLD ↔ ⟨𝐺, 𝑆⟩ ∈ CVecOLD))
23 oveq 7437 . . . . . . . 8 (𝑠 = 𝑆 → (𝑦𝑠𝑥) = (𝑦𝑆𝑥))
2423fveqeq2d 6915 . . . . . . 7 (𝑠 = 𝑆 → ((𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ↔ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥))))
2524ralbidv 3176 . . . . . 6 (𝑠 = 𝑆 → (∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ↔ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥))))
26253anbi2d 1440 . . . . 5 (𝑠 = 𝑆 → ((((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))) ↔ (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))
2726ralbidv 3176 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))) ↔ ∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))
2822, 273anbi13d 1437 . . 3 (𝑠 = 𝑆 → ((⟨𝐺, 𝑠⟩ ∈ CVecOLD𝑛:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))) ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑛:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))))
29 feq1 6717 . . . 4 (𝑛 = 𝑁 → (𝑛:𝑋⟶ℝ ↔ 𝑁:𝑋⟶ℝ))
30 fveq1 6906 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛𝑥) = (𝑁𝑥))
3130eqeq1d 2737 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛𝑥) = 0 ↔ (𝑁𝑥) = 0))
3231imbi1d 341 . . . . . 6 (𝑛 = 𝑁 → (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝑥) = 0 → 𝑥 = 𝑍)))
33 fveq1 6906 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝑥)))
3430oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑁 → ((abs‘𝑦) · (𝑛𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
3533, 34eqeq12d 2751 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ↔ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥))))
3635ralbidv 3176 . . . . . 6 (𝑛 = 𝑁 → (∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ↔ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥))))
37 fveq1 6906 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛‘(𝑥𝐺𝑦)) = (𝑁‘(𝑥𝐺𝑦)))
38 fveq1 6906 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛𝑦) = (𝑁𝑦))
3930, 38oveq12d 7449 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑛𝑥) + (𝑛𝑦)) = ((𝑁𝑥) + (𝑁𝑦)))
4037, 39breq12d 5161 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)) ↔ (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
4140ralbidv 3176 . . . . . 6 (𝑛 = 𝑁 → (∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
4232, 36, 413anbi123d 1435 . . . . 5 (𝑛 = 𝑁 → ((((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))) ↔ (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
4342ralbidv 3176 . . . 4 (𝑛 = 𝑁 → (∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))) ↔ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
4429, 433anbi23d 1438 . . 3 (𝑛 = 𝑁 → ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑛:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑛𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦𝑋 (𝑛‘(𝑥𝐺𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))) ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
4520, 28, 44eloprabg 7543 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))} ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
462, 45bitrid 283 1 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cop 4637   class class class wbr 5148  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  {coprab 7432  cc 11151  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158  cle 11294  abscabs 15270  GIdcgi 30519  CVecOLDcvc 30587  NrmCVeccnv 30613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-nv 30621
This theorem is referenced by:  isnv  30641
  Copyright terms: Public domain W3C validator