MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelrn Structured version   Visualization version   GIF version

Theorem fvelrn 6821
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
fvelrn ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)

Proof of Theorem fvelrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2877 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹𝐴 ∈ dom 𝐹))
21anbi2d 631 . . . 4 (𝑥 = 𝐴 → ((Fun 𝐹𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹𝐴 ∈ dom 𝐹)))
3 fveq2 6645 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
43eleq1d 2874 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ran 𝐹 ↔ (𝐹𝐴) ∈ ran 𝐹))
52, 4imbi12d 348 . . 3 (𝑥 = 𝐴 → (((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)))
6 funfvop 6797 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
7 vex 3444 . . . . . 6 𝑥 ∈ V
8 opeq1 4763 . . . . . . 7 (𝑦 = 𝑥 → ⟨𝑦, (𝐹𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩)
98eleq1d 2874 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑦, (𝐹𝑥)⟩ ∈ 𝐹 ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹))
107, 9spcev 3555 . . . . 5 (⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹 → ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
116, 10syl 17 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
12 fvex 6658 . . . . 5 (𝐹𝑥) ∈ V
1312elrn2 5785 . . . 4 ((𝐹𝑥) ∈ ran 𝐹 ↔ ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
1411, 13sylibr 237 . . 3 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
155, 14vtoclg 3515 . 2 (𝐴 ∈ dom 𝐹 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹))
1615anabsi7 670 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  cop 4531  dom cdm 5519  ran crn 5520  Fun wfun 6318  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332
This theorem is referenced by:  nelrnfvne  6822  fnfvelrn  6825  eldmrexrn  6834  fvn0fvelrn  6902  funfvima  6970  elunirn  6988  rankwflemb  9206  dfac9  9547  fin1a2lem6  9816  gsumpropd2lem  17881  iedgedg  26843  usgredg3  27006  ushgredgedg  27019  ushgredgedgloop  27021  subgruhgredgd  27074  edginwlk  27424  iedginwlk  27426  opfv  30407  fnpreimac  30434  ccatf1  30651  swrdrn2  30654  zartopn  31228  zarmxt1  31233  funeldmb  33119  nofv  33277  sltres  33282  nolt02olem  33311  nosupno  33316  bj-elccinfty  34629  bj-minftyccb  34640  icoreunrn  34776  indexdom  35172  diaclN  38346  dia1elN  38350  docaclN  38420  dibclN  38458  dfac21  40010  harval3  40244  gneispace  40837  cncmpmax  41661  icccncfext  42529  stoweidlem27  42669  stoweidlem29  42671  stoweidlem59  42701  fourierdlem20  42769  fourierdlem63  42811  fourierdlem76  42824  fourierdlem82  42830  fourierdlem93  42841  fourierdlem113  42861  fge0iccico  43009  sge0sn  43018  sge0tsms  43019  sge0cl  43020  sge0isum  43066  hoicvr  43187  funressndmfvrn  43636  afvelrn  43724  isomushgr  44344  ushrisomgr  44359  suppdm  44919
  Copyright terms: Public domain W3C validator