![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version |
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
2 | 1 | anbi2d 629 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
3 | fveq2 6920 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
4 | 3 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
6 | funfvop 7083 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
7 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | opeq1 4897 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → 〈𝑦, (𝐹‘𝑥)〉 = 〈𝑥, (𝐹‘𝑥)〉) | |
9 | 8 | eleq1d 2829 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹 ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹)) |
10 | 7, 9 | spcev 3619 | . . . . 5 ⊢ (〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹 → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
12 | fvex 6933 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
13 | 12 | elrn2 5917 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
14 | 11, 13 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
15 | 5, 14 | vtoclg 3566 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
16 | 15 | anabsi7 670 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 dom cdm 5700 ran crn 5701 Fun wfun 6567 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: nelrnfvne 7111 fnfvelrn 7114 eldmrexrn 7125 fvn0fvelrnOLD 7197 funfvima 7267 elunirn 7288 funeldmb 7395 rankwflemb 9862 dfac9 10206 fin1a2lem6 10474 gsumpropd2lem 18717 nofv 27720 sltres 27725 nolt02olem 27757 nosupno 27766 noinfno 27781 iedgedg 29085 usgredg3 29251 ushgredgedg 29264 ushgredgedgloop 29266 subgruhgredgd 29319 edginwlk 29671 iedginwlk 29673 opfv 32663 fnpreimac 32689 ccatf1 32915 swrdrn2 32921 zartopn 33821 zarmxt1 33826 bj-elccinfty 37180 bj-minftyccb 37191 icoreunrn 37325 indexdom 37694 diaclN 41007 dia1elN 41011 docaclN 41081 dibclN 41119 sticksstones1 42103 dfac21 43023 harval3 43500 gneispace 44096 cncmpmax 44932 icccncfext 45808 stoweidlem27 45948 stoweidlem29 45950 stoweidlem59 45980 fourierdlem20 46048 fourierdlem63 46090 fourierdlem76 46103 fourierdlem82 46109 fourierdlem93 46120 fourierdlem113 46140 fge0iccico 46291 sge0sn 46300 sge0tsms 46301 sge0cl 46302 sge0isum 46348 hoicvr 46469 funressndmfvrn 46959 fcores 46982 afvelrn 47083 gricushgr 47770 ushggricedg 47780 suppdm 48239 |
Copyright terms: Public domain | W3C validator |