| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
| 3 | fveq2 6817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 4 | 3 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
| 6 | funfvop 6978 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
| 7 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | opeq1 4820 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → 〈𝑦, (𝐹‘𝑥)〉 = 〈𝑥, (𝐹‘𝑥)〉) | |
| 9 | 8 | eleq1d 2816 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹 ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹)) |
| 10 | 7, 9 | spcev 3556 | . . . . 5 ⊢ (〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹 → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 12 | fvex 6830 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 13 | 12 | elrn2 5827 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 14 | 11, 13 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 15 | 5, 14 | vtoclg 3507 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
| 16 | 15 | anabsi7 671 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4577 dom cdm 5611 ran crn 5612 Fun wfun 6470 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 |
| This theorem is referenced by: nelrnfvne 7005 fnfvelrn 7008 eldmrexrn 7019 funfvima 7159 elunirn 7180 funeldmb 7288 rankwflemb 9681 dfac9 10023 fin1a2lem6 10291 gsumpropd2lem 18582 nofv 27591 sltres 27596 nolt02olem 27628 nosupno 27637 noinfno 27652 iedgedg 29023 usgredg3 29189 ushgredgedg 29202 ushgredgedgloop 29204 subgruhgredgd 29257 edginwlk 29608 iedginwlk 29610 cyclnumvtx 29773 opfv 32618 fnpreimac 32645 ccatf1 32922 swrdrn2 32927 zartopn 33880 zarmxt1 33885 bj-elccinfty 37248 bj-minftyccb 37259 icoreunrn 37393 indexdom 37774 diaclN 41089 dia1elN 41093 docaclN 41163 dibclN 41201 sticksstones1 42179 dfac21 43099 harval3 43571 gneispace 44167 cncmpmax 45069 icccncfext 45925 stoweidlem27 46065 stoweidlem29 46067 stoweidlem59 46097 fourierdlem20 46165 fourierdlem63 46207 fourierdlem76 46220 fourierdlem82 46226 fourierdlem93 46237 fourierdlem113 46257 fge0iccico 46408 sge0sn 46417 sge0tsms 46418 sge0cl 46419 sge0isum 46465 hoicvr 46586 funressndmfvrn 47075 fcores 47098 afvelrn 47199 isubgredg 47897 gricushgr 47948 ushggricedg 47958 suppdm 48542 |
| Copyright terms: Public domain | W3C validator |