| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
| 3 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 4 | 3 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
| 6 | funfvop 7004 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
| 7 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | opeq1 4833 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → 〈𝑦, (𝐹‘𝑥)〉 = 〈𝑥, (𝐹‘𝑥)〉) | |
| 9 | 8 | eleq1d 2813 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹 ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹)) |
| 10 | 7, 9 | spcev 3569 | . . . . 5 ⊢ (〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹 → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 12 | fvex 6853 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 13 | 12 | elrn2 5846 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 14 | 11, 13 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 15 | 5, 14 | vtoclg 3517 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
| 16 | 15 | anabsi7 671 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4591 dom cdm 5631 ran crn 5632 Fun wfun 6493 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: nelrnfvne 7031 fnfvelrn 7034 eldmrexrn 7045 fvn0fvelrnOLD 7117 funfvima 7186 elunirn 7207 funeldmb 7316 rankwflemb 9722 dfac9 10066 fin1a2lem6 10334 gsumpropd2lem 18582 nofv 27545 sltres 27550 nolt02olem 27582 nosupno 27591 noinfno 27606 iedgedg 28953 usgredg3 29119 ushgredgedg 29132 ushgredgedgloop 29134 subgruhgredgd 29187 edginwlk 29538 iedginwlk 29540 cyclnumvtx 29703 opfv 32541 fnpreimac 32568 ccatf1 32843 swrdrn2 32849 zartopn 33838 zarmxt1 33843 bj-elccinfty 37175 bj-minftyccb 37186 icoreunrn 37320 indexdom 37701 diaclN 41017 dia1elN 41021 docaclN 41091 dibclN 41129 sticksstones1 42107 dfac21 43028 harval3 43500 gneispace 44096 cncmpmax 44999 icccncfext 45858 stoweidlem27 45998 stoweidlem29 46000 stoweidlem59 46030 fourierdlem20 46098 fourierdlem63 46140 fourierdlem76 46153 fourierdlem82 46159 fourierdlem93 46170 fourierdlem113 46190 fge0iccico 46341 sge0sn 46350 sge0tsms 46351 sge0cl 46352 sge0isum 46398 hoicvr 46519 funressndmfvrn 47018 fcores 47041 afvelrn 47142 isubgredg 47839 gricushgr 47890 ushggricedg 47900 suppdm 48472 |
| Copyright terms: Public domain | W3C validator |