![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version |
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
3 | fveq2 6847 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
4 | 3 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
5 | 2, 4 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
6 | funfvop 7005 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹) | |
7 | vex 3452 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | opeq1 4835 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ⟨𝑦, (𝐹‘𝑥)⟩ = ⟨𝑥, (𝐹‘𝑥)⟩) | |
9 | 8 | eleq1d 2823 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹 ↔ ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹)) |
10 | 7, 9 | spcev 3568 | . . . . 5 ⊢ (⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹 → ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
12 | fvex 6860 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
13 | 12 | elrn2 5853 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
14 | 11, 13 | sylibr 233 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
15 | 5, 14 | vtoclg 3528 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
16 | 15 | anabsi7 670 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ⟨cop 4597 dom cdm 5638 ran crn 5639 Fun wfun 6495 ‘cfv 6501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6453 df-fun 6503 df-fn 6504 df-fv 6509 |
This theorem is referenced by: nelrnfvne 7033 fnfvelrn 7036 eldmrexrn 7046 fvn0fvelrnOLD 7114 funfvima 7185 elunirn 7203 funeldmb 7309 rankwflemb 9736 dfac9 10079 fin1a2lem6 10348 gsumpropd2lem 18541 nofv 27021 sltres 27026 nolt02olem 27058 nosupno 27067 noinfno 27082 iedgedg 28043 usgredg3 28206 ushgredgedg 28219 ushgredgedgloop 28221 subgruhgredgd 28274 edginwlk 28625 iedginwlk 28627 opfv 31603 fnpreimac 31629 ccatf1 31847 swrdrn2 31850 zartopn 32496 zarmxt1 32501 bj-elccinfty 35714 bj-minftyccb 35725 icoreunrn 35859 indexdom 36222 diaclN 39542 dia1elN 39546 docaclN 39616 dibclN 39654 sticksstones1 40583 dfac21 41422 harval3 41884 gneispace 42480 cncmpmax 43311 icccncfext 44202 stoweidlem27 44342 stoweidlem29 44344 stoweidlem59 44374 fourierdlem20 44442 fourierdlem63 44484 fourierdlem76 44497 fourierdlem82 44503 fourierdlem93 44514 fourierdlem113 44534 fge0iccico 44685 sge0sn 44694 sge0tsms 44695 sge0cl 44696 sge0isum 44742 hoicvr 44863 funressndmfvrn 45352 fcores 45375 afvelrn 45474 isomushgr 46092 ushrisomgr 46107 suppdm 46665 |
Copyright terms: Public domain | W3C validator |