![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version |
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2821 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
2 | 1 | anbi2d 629 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
3 | fveq2 6888 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
4 | 3 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
6 | funfvop 7048 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹) | |
7 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | opeq1 4872 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ⟨𝑦, (𝐹‘𝑥)⟩ = ⟨𝑥, (𝐹‘𝑥)⟩) | |
9 | 8 | eleq1d 2818 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹 ↔ ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹)) |
10 | 7, 9 | spcev 3596 | . . . . 5 ⊢ (⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹 → ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
12 | fvex 6901 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
13 | 12 | elrn2 5890 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
14 | 11, 13 | sylibr 233 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
15 | 5, 14 | vtoclg 3556 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
16 | 15 | anabsi7 669 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ⟨cop 4633 dom cdm 5675 ran crn 5676 Fun wfun 6534 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-fv 6548 |
This theorem is referenced by: nelrnfvne 7076 fnfvelrn 7079 eldmrexrn 7089 fvn0fvelrnOLD 7157 funfvima 7228 elunirn 7246 funeldmb 7352 rankwflemb 9784 dfac9 10127 fin1a2lem6 10396 gsumpropd2lem 18594 nofv 27149 sltres 27154 nolt02olem 27186 nosupno 27195 noinfno 27210 iedgedg 28299 usgredg3 28462 ushgredgedg 28475 ushgredgedgloop 28477 subgruhgredgd 28530 edginwlk 28881 iedginwlk 28883 opfv 31857 fnpreimac 31883 ccatf1 32102 swrdrn2 32105 zartopn 32843 zarmxt1 32848 bj-elccinfty 36083 bj-minftyccb 36094 icoreunrn 36228 indexdom 36590 diaclN 39909 dia1elN 39913 docaclN 39983 dibclN 40021 sticksstones1 40950 dfac21 41793 harval3 42274 gneispace 42870 cncmpmax 43701 icccncfext 44589 stoweidlem27 44729 stoweidlem29 44731 stoweidlem59 44761 fourierdlem20 44829 fourierdlem63 44871 fourierdlem76 44884 fourierdlem82 44890 fourierdlem93 44901 fourierdlem113 44921 fge0iccico 45072 sge0sn 45081 sge0tsms 45082 sge0cl 45083 sge0isum 45129 hoicvr 45250 funressndmfvrn 45740 fcores 45763 afvelrn 45862 isomushgr 46480 ushrisomgr 46495 suppdm 47144 |
Copyright terms: Public domain | W3C validator |