| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
| 3 | fveq2 6876 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 4 | 3 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
| 6 | funfvop 7040 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
| 7 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | opeq1 4849 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → 〈𝑦, (𝐹‘𝑥)〉 = 〈𝑥, (𝐹‘𝑥)〉) | |
| 9 | 8 | eleq1d 2819 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹 ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹)) |
| 10 | 7, 9 | spcev 3585 | . . . . 5 ⊢ (〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹 → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 12 | fvex 6889 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 13 | 12 | elrn2 5872 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 14 | 11, 13 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 15 | 5, 14 | vtoclg 3533 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
| 16 | 15 | anabsi7 671 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 〈cop 4607 dom cdm 5654 ran crn 5655 Fun wfun 6525 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: nelrnfvne 7067 fnfvelrn 7070 eldmrexrn 7081 fvn0fvelrnOLD 7153 funfvima 7222 elunirn 7243 funeldmb 7352 rankwflemb 9807 dfac9 10151 fin1a2lem6 10419 gsumpropd2lem 18657 nofv 27621 sltres 27626 nolt02olem 27658 nosupno 27667 noinfno 27682 iedgedg 29029 usgredg3 29195 ushgredgedg 29208 ushgredgedgloop 29210 subgruhgredgd 29263 edginwlk 29615 iedginwlk 29617 cyclnumvtx 29782 opfv 32622 fnpreimac 32649 ccatf1 32924 swrdrn2 32930 zartopn 33906 zarmxt1 33911 bj-elccinfty 37232 bj-minftyccb 37243 icoreunrn 37377 indexdom 37758 diaclN 41069 dia1elN 41073 docaclN 41143 dibclN 41181 sticksstones1 42159 dfac21 43090 harval3 43562 gneispace 44158 cncmpmax 45056 icccncfext 45916 stoweidlem27 46056 stoweidlem29 46058 stoweidlem59 46088 fourierdlem20 46156 fourierdlem63 46198 fourierdlem76 46211 fourierdlem82 46217 fourierdlem93 46228 fourierdlem113 46248 fge0iccico 46399 sge0sn 46408 sge0tsms 46409 sge0cl 46410 sge0isum 46456 hoicvr 46577 funressndmfvrn 47073 fcores 47096 afvelrn 47197 isubgredg 47879 gricushgr 47930 ushggricedg 47940 suppdm 48486 |
| Copyright terms: Public domain | W3C validator |