| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
| 3 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 4 | 3 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
| 6 | funfvop 7025 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
| 7 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | opeq1 4840 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → 〈𝑦, (𝐹‘𝑥)〉 = 〈𝑥, (𝐹‘𝑥)〉) | |
| 9 | 8 | eleq1d 2814 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹 ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹)) |
| 10 | 7, 9 | spcev 3575 | . . . . 5 ⊢ (〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹 → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 12 | fvex 6874 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 13 | 12 | elrn2 5859 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 14 | 11, 13 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 15 | 5, 14 | vtoclg 3523 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
| 16 | 15 | anabsi7 671 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4598 dom cdm 5641 ran crn 5642 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: nelrnfvne 7052 fnfvelrn 7055 eldmrexrn 7066 fvn0fvelrnOLD 7138 funfvima 7207 elunirn 7228 funeldmb 7337 rankwflemb 9753 dfac9 10097 fin1a2lem6 10365 gsumpropd2lem 18613 nofv 27576 sltres 27581 nolt02olem 27613 nosupno 27622 noinfno 27637 iedgedg 28984 usgredg3 29150 ushgredgedg 29163 ushgredgedgloop 29165 subgruhgredgd 29218 edginwlk 29570 iedginwlk 29572 cyclnumvtx 29737 opfv 32575 fnpreimac 32602 ccatf1 32877 swrdrn2 32883 zartopn 33872 zarmxt1 33877 bj-elccinfty 37209 bj-minftyccb 37220 icoreunrn 37354 indexdom 37735 diaclN 41051 dia1elN 41055 docaclN 41125 dibclN 41163 sticksstones1 42141 dfac21 43062 harval3 43534 gneispace 44130 cncmpmax 45033 icccncfext 45892 stoweidlem27 46032 stoweidlem29 46034 stoweidlem59 46064 fourierdlem20 46132 fourierdlem63 46174 fourierdlem76 46187 fourierdlem82 46193 fourierdlem93 46204 fourierdlem113 46224 fge0iccico 46375 sge0sn 46384 sge0tsms 46385 sge0cl 46386 sge0isum 46432 hoicvr 46553 funressndmfvrn 47049 fcores 47072 afvelrn 47173 isubgredg 47870 gricushgr 47921 ushggricedg 47931 suppdm 48503 |
| Copyright terms: Public domain | W3C validator |