| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvelrn | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
| 3 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 4 | 3 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
| 6 | funfvop 7022 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
| 7 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | opeq1 4837 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → 〈𝑦, (𝐹‘𝑥)〉 = 〈𝑥, (𝐹‘𝑥)〉) | |
| 9 | 8 | eleq1d 2813 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹 ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹)) |
| 10 | 7, 9 | spcev 3572 | . . . . 5 ⊢ (〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹 → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 12 | fvex 6871 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 13 | 12 | elrn2 5856 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦〈𝑦, (𝐹‘𝑥)〉 ∈ 𝐹) |
| 14 | 11, 13 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 15 | 5, 14 | vtoclg 3520 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
| 16 | 15 | anabsi7 671 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4595 dom cdm 5638 ran crn 5639 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: nelrnfvne 7049 fnfvelrn 7052 eldmrexrn 7063 fvn0fvelrnOLD 7135 funfvima 7204 elunirn 7225 funeldmb 7334 rankwflemb 9746 dfac9 10090 fin1a2lem6 10358 gsumpropd2lem 18606 nofv 27569 sltres 27574 nolt02olem 27606 nosupno 27615 noinfno 27630 iedgedg 28977 usgredg3 29143 ushgredgedg 29156 ushgredgedgloop 29158 subgruhgredgd 29211 edginwlk 29563 iedginwlk 29565 cyclnumvtx 29730 opfv 32568 fnpreimac 32595 ccatf1 32870 swrdrn2 32876 zartopn 33865 zarmxt1 33870 bj-elccinfty 37202 bj-minftyccb 37213 icoreunrn 37347 indexdom 37728 diaclN 41044 dia1elN 41048 docaclN 41118 dibclN 41156 sticksstones1 42134 dfac21 43055 harval3 43527 gneispace 44123 cncmpmax 45026 icccncfext 45885 stoweidlem27 46025 stoweidlem29 46027 stoweidlem59 46057 fourierdlem20 46125 fourierdlem63 46167 fourierdlem76 46180 fourierdlem82 46186 fourierdlem93 46197 fourierdlem113 46217 fge0iccico 46368 sge0sn 46377 sge0tsms 46378 sge0cl 46379 sge0isum 46425 hoicvr 46546 funressndmfvrn 47045 fcores 47068 afvelrn 47169 isubgredg 47866 gricushgr 47917 ushggricedg 47927 suppdm 48499 |
| Copyright terms: Public domain | W3C validator |