MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt2d Structured version   Visualization version   GIF version

Theorem elrnmpt2d 5963
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmpt2d.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt2d.2 (𝜑𝐶 ∈ ran 𝐹)
Assertion
Ref Expression
elrnmpt2d (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem elrnmpt2d
StepHypRef Expression
1 elrnmpt2d.2 . 2 (𝜑𝐶 ∈ ran 𝐹)
2 elrnmpt2d.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
32elrnmpt 5956 . . 3 (𝐶 ∈ ran 𝐹 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
43ibi 266 . 2 (𝐶 ∈ ran 𝐹 → ∃𝑥𝐴 𝐶 = 𝐵)
51, 4syl 17 1 (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wrex 3069  cmpt 5232  ran crn 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-mpt 5233  df-cnv 5685  df-dm 5687  df-rn 5688
This theorem is referenced by:  ablsimpg1gend  20017
  Copyright terms: Public domain W3C validator