![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmpt2d | Structured version Visualization version GIF version |
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
elrnmpt2d.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpt2d.2 | ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Ref | Expression |
---|---|
elrnmpt2d | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpt2d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) | |
2 | elrnmpt2d.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | elrnmpt 5954 | . . 3 ⊢ (𝐶 ∈ ran 𝐹 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
4 | 3 | ibi 266 | . 2 ⊢ (𝐶 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 ↦ cmpt 5228 ran crn 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-mpt 5229 df-cnv 5682 df-dm 5684 df-rn 5685 |
This theorem is referenced by: ablsimpg1gend 20101 |
Copyright terms: Public domain | W3C validator |