MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt2d Structured version   Visualization version   GIF version

Theorem elrnmpt2d 5989
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmpt2d.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt2d.2 (𝜑𝐶 ∈ ran 𝐹)
Assertion
Ref Expression
elrnmpt2d (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem elrnmpt2d
StepHypRef Expression
1 elrnmpt2d.2 . 2 (𝜑𝐶 ∈ ran 𝐹)
2 elrnmpt2d.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
32elrnmpt 5981 . . 3 (𝐶 ∈ ran 𝐹 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
43ibi 267 . 2 (𝐶 ∈ ran 𝐹 → ∃𝑥𝐴 𝐶 = 𝐵)
51, 4syl 17 1 (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  ablsimpg1gend  20149
  Copyright terms: Public domain W3C validator