Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnmpt2d | Structured version Visualization version GIF version |
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
elrnmpt2d.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpt2d.2 | ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) |
Ref | Expression |
---|---|
elrnmpt2d | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpt2d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) | |
2 | elrnmpt2d.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | elrnmpt 5797 | . . 3 ⊢ (𝐶 ∈ ran 𝐹 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
4 | 3 | ibi 270 | . 2 ⊢ (𝐶 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ↦ cmpt 5112 ran crn 5525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-mpt 5113 df-cnv 5532 df-dm 5534 df-rn 5535 |
This theorem is referenced by: ablsimpg1gend 19295 |
Copyright terms: Public domain | W3C validator |