MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun3g Structured version   Visualization version   GIF version

Theorem dfiun3g 5626
Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiun3g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))

Proof of Theorem dfiun3g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4787 . 2 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2 eqid 2778 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5619 . . 3 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
43unieqi 4682 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4syl6eqr 2832 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  {cab 2763  wral 3090  wrex 3091   cuni 4673   ciun 4755  cmpt 4967  ran crn 5358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-cnv 5365  df-dm 5367  df-rn 5368
This theorem is referenced by:  dfiun3  5628  iunon  7721  onoviun  7725  gruiun  9958  tgiun  21195  acunirnmpt2f  30030  locfinreflem  30509  carsgclctunlem2  30983  pmeasadd  30989  saliuncl  41476  salexct3  41494  salgensscntex  41496  meadjiun  41617  omeiunle  41668  ovolval5lem2  41804
  Copyright terms: Public domain W3C validator