![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiun3g | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfiun3g | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 5053 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | rnmpt 5980 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
4 | 3 | unieqi 4943 | . 2 ⊢ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
5 | 1, 4 | eqtr4di 2798 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ∪ cuni 4931 ∪ ciun 5015 ↦ cmpt 5249 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: dfiun3 5992 iunon 8395 onoviun 8399 gruiun 10868 tgiun 23007 acunirnmpt2f 32679 locfinreflem 33786 carsgclctunlem2 34284 pmeasadd 34290 saliunclf 46243 salexct3 46263 salgensscntex 46265 meadjiun 46387 omeiunle 46438 ovolval5lem2 46574 |
Copyright terms: Public domain | W3C validator |