MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt Structured version   Visualization version   GIF version

Theorem elrnmpt 5865
Description: The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmpt (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . 3 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
21rexbidv 3226 . 2 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
3 rnmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43rnmpt 5864 . 2 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
52, 4elab2g 3611 1 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wrex 3065  cmpt 5157  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  elrnmpt1s  5866  elrnmptd  5870  elrnmptdv  5871  elrnmpt2d  5872  onnseq  8175  oarec  8393  fifo  9191  infpwfien  9818  fin23lem38  10105  fin1a2lem13  10168  ac6num  10235  isercoll2  15380  iserodd  16536  gsumwspan  18485  odf1o2  19178  mplcoe5lem  21240  neitr  22331  ordtbas2  22342  ordtopn1  22345  ordtopn2  22346  pnfnei  22371  mnfnei  22372  pnrmcld  22493  2ndcomap  22609  dis2ndc  22611  ptpjopn  22763  fbasrn  23035  elfm  23098  rnelfmlem  23103  rnelfm  23104  fmfnfmlem3  23107  fmfnfmlem4  23108  fmfnfm  23109  ptcmplem2  23204  tsmsfbas  23279  ustuqtoplem  23391  utopsnneiplem  23399  utopsnnei  23401  utopreg  23404  fmucnd  23444  neipcfilu  23448  imasdsf1olem  23526  xpsdsval  23534  met1stc  23677  metustel  23706  metustsym  23711  metuel2  23721  metustbl  23722  restmetu  23726  xrtgioo  23969  minveclem3b  24592  uniioombllem3  24749  dvivth  25174  gausslemma2dlem1a  26513  elimampt  30973  acunirnmpt  30996  acunirnmpt2  30997  acunirnmpt2f  30998  fnpreimac  31008  trsp2cyc  31390  nsgqusf1olem2  31599  nsgqusf1olem3  31600  locfinreflem  31790  zarclsint  31822  zarcls  31824  ordtconnlem1  31874  esumcst  32031  esumrnmpt2  32036  measdivcstALTV  32193  oms0  32264  omssubadd  32267  cvmsss2  33236  poimirlem16  35793  poimirlem19  35796  poimirlem24  35801  poimirlem27  35804  itg2addnclem2  35829  nelrnmpt  42634  suprnmpt  42710  rnmptpr  42713  wessf1ornlem  42722  disjrnmpt2  42726  disjf1o  42729  disjinfi  42731  choicefi  42740  rnmptlb  42788  rnmptbddlem  42789  rnmptbd2lem  42794  infnsuprnmpt  42796  elmptima  42804  supxrleubrnmpt  42946  suprleubrnmpt  42962  infrnmptle  42963  infxrunb3rnmpt  42968  supminfrnmpt  42985  infxrgelbrnmpt  42994  infrpgernmpt  43005  supminfxrrnmpt  43011  stoweidlem27  43568  stoweidlem31  43572  stoweidlem35  43576  stirlinglem5  43619  stirlinglem13  43627  fourierdlem80  43727  fourierdlem93  43740  fourierdlem103  43750  fourierdlem104  43751  subsaliuncllem  43896  subsaliuncl  43897  sge0rnn0  43906  sge00  43914  fsumlesge0  43915  sge0tsms  43918  sge0cl  43919  sge0f1o  43920  sge0fsum  43925  sge0supre  43927  sge0rnbnd  43931  sge0pnffigt  43934  sge0lefi  43936  sge0ltfirp  43938  sge0resplit  43944  sge0split  43947  sge0reuz  43985  sge0reuzb  43986  hoidmvlelem2  44134  smfpimcc  44341
  Copyright terms: Public domain W3C validator