Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elxpxpss | Structured version Visualization version GIF version |
Description: Version of elrel 5697 for triple cross products. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
elxpxpss | ⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3912 | . 2 ⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ ((𝐵 × 𝐶) × 𝐷)) | |
2 | elxpxp 33586 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
3 | rexex 3167 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
4 | 3 | reximi 3174 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
5 | rexex 3167 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
7 | 6 | reximi 3174 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
8 | rexex 3167 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
10 | 2, 9 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
11 | 1, 10 | syl 17 | 1 ⊢ ((𝑅 ⊆ ((𝐵 × 𝐶) × 𝐷) ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-iun 4923 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: frxp3 33724 |
Copyright terms: Public domain | W3C validator |