Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elxpxp | Structured version Visualization version GIF version |
Description: Membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
elxpxp | ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5604 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉) | |
2 | opeq1 4801 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈𝑝, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) | |
3 | 2 | eqeq2d 2749 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐴 = 〈𝑝, 𝑧〉 ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
4 | 3 | rexbidv 3225 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
5 | 4 | rexxp 5740 | . 2 ⊢ (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧 ∈ 𝐷 𝐴 = 〈𝑝, 𝑧〉 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
6 | 1, 5 | bitri 274 | 1 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-iun 4923 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: elxpxpss 33587 ralxp3f 33588 frpoins3xp3g 33715 poxp3 33723 xpord3pred 33725 sexp3 33726 |
Copyright terms: Public domain | W3C validator |