Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elxpxp Structured version   Visualization version   GIF version

Theorem elxpxp 33214
Description: Membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.)
Assertion
Ref Expression
elxpxp (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧

Proof of Theorem elxpxp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elxp2 5552 . 2 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩)
2 opeq1 4764 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨𝑝, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
32eqeq2d 2769 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑝, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
43rexbidv 3221 . . 3 (𝑝 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54rexxp 5688 . 2 (∃𝑝 ∈ (𝐵 × 𝐶)∃𝑧𝐷 𝐴 = ⟨𝑝, 𝑧⟩ ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
61, 5bitri 278 1 (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wcel 2111  wrex 3071  cop 4531   × cxp 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-iun 4888  df-opab 5099  df-xp 5534  df-rel 5535
This theorem is referenced by:  elxpxpss  33215  ralxp3f  33216  frpoins3xp3g  33345  poxp3  33363  xpord3pred  33365  sexp3  33366  no3indslem  33697
  Copyright terms: Public domain W3C validator