| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enssdomOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of enssdom 8908 as of 10-Feb-2026. (Contributed by NM, 31-Mar-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enssdomOLD | ⊢ ≈ ⊆ ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8883 | . 2 ⊢ Rel ≈ | |
| 2 | f1of1 6770 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑓:𝑥–1-1→𝑦) | |
| 3 | 2 | eximi 1836 | . . . 4 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → ∃𝑓 𝑓:𝑥–1-1→𝑦) |
| 4 | opabidw 5469 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
| 5 | opabidw 5469 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1→𝑦) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
| 7 | df-en 8879 | . . . 4 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 8 | 7 | eleq2i 2825 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦}) |
| 9 | df-dom 8880 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 10 | 9 | eleq2i 2825 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≼ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
| 11 | 6, 8, 10 | 3imtr4i 292 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ → 〈𝑥, 𝑦〉 ∈ ≼ ) |
| 12 | 1, 11 | relssi 5733 | 1 ⊢ ≈ ⊆ ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 ∈ wcel 2113 ⊆ wss 3899 〈cop 4583 {copab 5157 –1-1→wf1 6486 –1-1-onto→wf1o 6488 ≈ cen 8875 ≼ cdom 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 df-xp 5627 df-rel 5628 df-f1o 6496 df-en 8879 df-dom 8880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |