Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 01eq0ring | Structured version Visualization version GIF version |
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) |
Ref | Expression |
---|---|
0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
0ring.0 | ⊢ 0 = (0g‘𝑅) |
0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
01eq0ring | ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | fvexi 6782 | . . . . . 6 ⊢ 𝐵 ∈ V |
3 | hashv01gt1 14048 | . . . . . 6 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) |
5 | hasheq0 14067 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅)) | |
6 | 2, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝐵) = 0 ↔ 𝐵 = ∅) |
7 | ne0i 4270 | . . . . . . . . 9 ⊢ ( 0 ∈ 𝐵 → 𝐵 ≠ ∅) | |
8 | eqneqall 2954 | . . . . . . . . 9 ⊢ (𝐵 = ∅ → (𝐵 ≠ ∅ → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) | |
9 | 7, 8 | syl5com 31 | . . . . . . . 8 ⊢ ( 0 ∈ 𝐵 → (𝐵 = ∅ → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
10 | 6, 9 | syl5bi 241 | . . . . . . 7 ⊢ ( 0 ∈ 𝐵 → ((♯‘𝐵) = 0 → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
11 | 0ring.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
12 | 1, 11 | ring0cl 19797 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
13 | 10, 12 | syl11 33 | . . . . . 6 ⊢ ((♯‘𝐵) = 0 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
14 | eqneqall 2954 | . . . . . . 7 ⊢ ((♯‘𝐵) = 1 → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 )) | |
15 | 14 | a1d 25 | . . . . . 6 ⊢ ((♯‘𝐵) = 1 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
16 | 0ring01eq.1 | . . . . . . . . . . 11 ⊢ 1 = (1r‘𝑅) | |
17 | 1, 16, 11 | ring1ne0 19819 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) |
18 | 17 | necomd 2999 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 0 ≠ 1 ) |
19 | 18 | ex 413 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 0 ≠ 1 )) |
20 | 19 | a1i 11 | . . . . . . 7 ⊢ ((♯‘𝐵) ≠ 1 → (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 0 ≠ 1 ))) |
21 | 20 | com13 88 | . . . . . 6 ⊢ (1 < (♯‘𝐵) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
22 | 13, 15, 21 | 3jaoi 1426 | . . . . 5 ⊢ (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
23 | 4, 22 | ax-mp 5 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 )) |
24 | 23 | necon4d 2967 | . . 3 ⊢ (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1)) |
25 | 24 | imp 407 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1) |
26 | 1, 11 | 0ring 20530 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
27 | 25, 26 | syldan 591 | 1 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3431 ∅c0 4258 {csn 4563 class class class wbr 5075 ‘cfv 6428 0cc0 10860 1c1 10861 < clt 10998 ♯chash 14033 Basecbs 16901 0gc0g 17139 1rcur 19726 Ringcrg 19772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-n0 12223 df-xnn0 12295 df-z 12309 df-uz 12572 df-fz 13229 df-hash 14034 df-sets 16854 df-slot 16872 df-ndx 16884 df-base 16902 df-plusg 16964 df-0g 17141 df-mgm 18315 df-sgrp 18364 df-mnd 18375 df-grp 18569 df-minusg 18570 df-mgp 19710 df-ur 19727 df-ring 19774 |
This theorem is referenced by: 0ring01eqbi 20533 zarcmplem 31818 ldepspr 45771 |
Copyright terms: Public domain | W3C validator |