MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01eq0ring Structured version   Visualization version   GIF version

Theorem 01eq0ring 20045
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
0ring.b 𝐵 = (Base‘𝑅)
0ring.0 0 = (0g𝑅)
0ring01eq.1 1 = (1r𝑅)
Assertion
Ref Expression
01eq0ring ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })

Proof of Theorem 01eq0ring
StepHypRef Expression
1 0ring.b . . . . . . 7 𝐵 = (Base‘𝑅)
21fvexi 6684 . . . . . 6 𝐵 ∈ V
3 hashv01gt1 13706 . . . . . 6 (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)))
42, 3ax-mp 5 . . . . 5 ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))
5 hasheq0 13725 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
62, 5ax-mp 5 . . . . . . . 8 ((♯‘𝐵) = 0 ↔ 𝐵 = ∅)
7 ne0i 4300 . . . . . . . . 9 ( 0𝐵𝐵 ≠ ∅)
8 eqneqall 3027 . . . . . . . . 9 (𝐵 = ∅ → (𝐵 ≠ ∅ → ((♯‘𝐵) ≠ 1 → 01 )))
97, 8syl5com 31 . . . . . . . 8 ( 0𝐵 → (𝐵 = ∅ → ((♯‘𝐵) ≠ 1 → 01 )))
106, 9syl5bi 244 . . . . . . 7 ( 0𝐵 → ((♯‘𝐵) = 0 → ((♯‘𝐵) ≠ 1 → 01 )))
11 0ring.0 . . . . . . . 8 0 = (0g𝑅)
121, 11ring0cl 19319 . . . . . . 7 (𝑅 ∈ Ring → 0𝐵)
1310, 12syl11 33 . . . . . 6 ((♯‘𝐵) = 0 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
14 eqneqall 3027 . . . . . . 7 ((♯‘𝐵) = 1 → ((♯‘𝐵) ≠ 1 → 01 ))
1514a1d 25 . . . . . 6 ((♯‘𝐵) = 1 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
16 0ring01eq.1 . . . . . . . . . . 11 1 = (1r𝑅)
171, 16, 11ring1ne0 19341 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 )
1817necomd 3071 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 01 )
1918ex 415 . . . . . . . 8 (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 01 ))
2019a1i 11 . . . . . . 7 ((♯‘𝐵) ≠ 1 → (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 01 )))
2120com13 88 . . . . . 6 (1 < (♯‘𝐵) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
2213, 15, 213jaoi 1423 . . . . 5 (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
234, 22ax-mp 5 . . . 4 (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 ))
2423necon4d 3040 . . 3 (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1))
2524imp 409 . 2 ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1)
261, 110ring 20043 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })
2725, 26syldan 593 1 ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  c0 4291  {csn 4567   class class class wbr 5066  cfv 6355  0cc0 10537  1c1 10538   < clt 10675  chash 13691  Basecbs 16483  0gc0g 16713  1rcur 19251  Ringcrg 19297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-mgp 19240  df-ur 19252  df-ring 19299
This theorem is referenced by:  0ring01eqbi  20046  ldepspr  44548
  Copyright terms: Public domain W3C validator