MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01eq0ring Structured version   Visualization version   GIF version

Theorem 01eq0ring 20532
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
0ring.b 𝐵 = (Base‘𝑅)
0ring.0 0 = (0g𝑅)
0ring01eq.1 1 = (1r𝑅)
Assertion
Ref Expression
01eq0ring ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })

Proof of Theorem 01eq0ring
StepHypRef Expression
1 0ring.b . . . . . . 7 𝐵 = (Base‘𝑅)
21fvexi 6782 . . . . . 6 𝐵 ∈ V
3 hashv01gt1 14048 . . . . . 6 (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)))
42, 3ax-mp 5 . . . . 5 ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))
5 hasheq0 14067 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
62, 5ax-mp 5 . . . . . . . 8 ((♯‘𝐵) = 0 ↔ 𝐵 = ∅)
7 ne0i 4270 . . . . . . . . 9 ( 0𝐵𝐵 ≠ ∅)
8 eqneqall 2954 . . . . . . . . 9 (𝐵 = ∅ → (𝐵 ≠ ∅ → ((♯‘𝐵) ≠ 1 → 01 )))
97, 8syl5com 31 . . . . . . . 8 ( 0𝐵 → (𝐵 = ∅ → ((♯‘𝐵) ≠ 1 → 01 )))
106, 9syl5bi 241 . . . . . . 7 ( 0𝐵 → ((♯‘𝐵) = 0 → ((♯‘𝐵) ≠ 1 → 01 )))
11 0ring.0 . . . . . . . 8 0 = (0g𝑅)
121, 11ring0cl 19797 . . . . . . 7 (𝑅 ∈ Ring → 0𝐵)
1310, 12syl11 33 . . . . . 6 ((♯‘𝐵) = 0 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
14 eqneqall 2954 . . . . . . 7 ((♯‘𝐵) = 1 → ((♯‘𝐵) ≠ 1 → 01 ))
1514a1d 25 . . . . . 6 ((♯‘𝐵) = 1 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
16 0ring01eq.1 . . . . . . . . . . 11 1 = (1r𝑅)
171, 16, 11ring1ne0 19819 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 )
1817necomd 2999 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 01 )
1918ex 413 . . . . . . . 8 (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 01 ))
2019a1i 11 . . . . . . 7 ((♯‘𝐵) ≠ 1 → (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 01 )))
2120com13 88 . . . . . 6 (1 < (♯‘𝐵) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
2213, 15, 213jaoi 1426 . . . . 5 (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
234, 22ax-mp 5 . . . 4 (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 ))
2423necon4d 2967 . . 3 (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1))
2524imp 407 . 2 ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1)
261, 110ring 20530 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })
2725, 26syldan 591 1 ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1085   = wceq 1539  wcel 2106  wne 2943  Vcvv 3431  c0 4258  {csn 4563   class class class wbr 5075  cfv 6428  0cc0 10860  1c1 10861   < clt 10998  chash 14033  Basecbs 16901  0gc0g 17139  1rcur 19726  Ringcrg 19772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8487  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-card 9686  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-nn 11963  df-2 12025  df-n0 12223  df-xnn0 12295  df-z 12309  df-uz 12572  df-fz 13229  df-hash 14034  df-sets 16854  df-slot 16872  df-ndx 16884  df-base 16902  df-plusg 16964  df-0g 17141  df-mgm 18315  df-sgrp 18364  df-mnd 18375  df-grp 18569  df-minusg 18570  df-mgp 19710  df-ur 19727  df-ring 19774
This theorem is referenced by:  0ring01eqbi  20533  zarcmplem  31818  ldepspr  45771
  Copyright terms: Public domain W3C validator