Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 01eq0ring | Structured version Visualization version GIF version |
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) |
Ref | Expression |
---|---|
0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
0ring.0 | ⊢ 0 = (0g‘𝑅) |
0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
01eq0ring | ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | fvexi 6770 | . . . . . 6 ⊢ 𝐵 ∈ V |
3 | hashv01gt1 13987 | . . . . . 6 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) |
5 | hasheq0 14006 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅)) | |
6 | 2, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝐵) = 0 ↔ 𝐵 = ∅) |
7 | ne0i 4265 | . . . . . . . . 9 ⊢ ( 0 ∈ 𝐵 → 𝐵 ≠ ∅) | |
8 | eqneqall 2953 | . . . . . . . . 9 ⊢ (𝐵 = ∅ → (𝐵 ≠ ∅ → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) | |
9 | 7, 8 | syl5com 31 | . . . . . . . 8 ⊢ ( 0 ∈ 𝐵 → (𝐵 = ∅ → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
10 | 6, 9 | syl5bi 241 | . . . . . . 7 ⊢ ( 0 ∈ 𝐵 → ((♯‘𝐵) = 0 → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
11 | 0ring.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
12 | 1, 11 | ring0cl 19723 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
13 | 10, 12 | syl11 33 | . . . . . 6 ⊢ ((♯‘𝐵) = 0 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
14 | eqneqall 2953 | . . . . . . 7 ⊢ ((♯‘𝐵) = 1 → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 )) | |
15 | 14 | a1d 25 | . . . . . 6 ⊢ ((♯‘𝐵) = 1 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
16 | 0ring01eq.1 | . . . . . . . . . . 11 ⊢ 1 = (1r‘𝑅) | |
17 | 1, 16, 11 | ring1ne0 19745 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) |
18 | 17 | necomd 2998 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 0 ≠ 1 ) |
19 | 18 | ex 412 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 0 ≠ 1 )) |
20 | 19 | a1i 11 | . . . . . . 7 ⊢ ((♯‘𝐵) ≠ 1 → (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 0 ≠ 1 ))) |
21 | 20 | com13 88 | . . . . . 6 ⊢ (1 < (♯‘𝐵) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
22 | 13, 15, 21 | 3jaoi 1425 | . . . . 5 ⊢ (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
23 | 4, 22 | ax-mp 5 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 )) |
24 | 23 | necon4d 2966 | . . 3 ⊢ (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1)) |
25 | 24 | imp 406 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1) |
26 | 1, 11 | 0ring 20454 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
27 | 25, 26 | syldan 590 | 1 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 {csn 4558 class class class wbr 5070 ‘cfv 6418 0cc0 10802 1c1 10803 < clt 10940 ♯chash 13972 Basecbs 16840 0gc0g 17067 1rcur 19652 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ur 19653 df-ring 19700 |
This theorem is referenced by: 0ring01eqbi 20457 zarcmplem 31733 ldepspr 45702 |
Copyright terms: Public domain | W3C validator |