MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopeu Structured version   Visualization version   GIF version

Theorem qtopeu 23610
Description: Universal property of the quotient topology. If 𝐺 is a function from 𝐽 to 𝐾 which is equal on all equivalent elements under 𝐹, then there is a unique continuous map 𝑓:(𝐽 / 𝐹)⟶𝐾 such that 𝐺 = 𝑓𝐹, and we say that 𝐺 "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopeu.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
qtopeu.3 (𝜑𝐹:𝑋onto𝑌)
qtopeu.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
qtopeu.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐺𝑥) = (𝐺𝑦))
Assertion
Ref Expression
qtopeu (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑓,𝐽,𝑥   𝑓,𝐾,𝑥   𝑥,𝑋,𝑦   𝑓,𝐺,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   𝑓,𝑌,𝑥
Allowed substitution hints:   𝐽(𝑦)   𝐾(𝑦)   𝑋(𝑓)   𝑌(𝑦)

Proof of Theorem qtopeu
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtopeu.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋onto𝑌)
2 fofn 6777 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
31, 2syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝑋)
43adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 𝐹 Fn 𝑋)
5 fniniseg 7035 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → (𝑦 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
64, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑦 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
7 eqcom 2737 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
873anbi3i 1159 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑥𝑋𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)))
9 3anass 1094 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)) ↔ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
108, 9bitri 275 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
11 qtopeu.5 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐺𝑥) = (𝐺𝑦))
1210, 11sylan2br 595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)))) → (𝐺𝑥) = (𝐺𝑦))
1312eqcomd 2736 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)))) → (𝐺𝑦) = (𝐺𝑥))
1413expr 456 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ((𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)) → (𝐺𝑦) = (𝐺𝑥)))
156, 14sylbid 240 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (𝑦 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝐺𝑦) = (𝐺𝑥)))
1615ralrimiv 3125 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ∀𝑦 ∈ (𝐹 “ {(𝐹𝑥)})(𝐺𝑦) = (𝐺𝑥))
17 qtopeu.1 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (TopOn‘𝑋))
18 qtopeu.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
19 cntop2 23135 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Top)
21 toptopon2 22812 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2220, 21sylib 218 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
23 cnf2 23143 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋 𝐾)
2417, 22, 18, 23syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑋 𝐾)
2524ffnd 6692 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝑋)
2625adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝐺 Fn 𝑋)
27 cnvimass 6056 . . . . . . . . . . . . 13 (𝐹 “ {(𝐹𝑥)}) ⊆ dom 𝐹
28 fof 6775 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
291, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋𝑌)
3029fdmd 6701 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐹 = 𝑋)
3130adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → dom 𝐹 = 𝑋)
3227, 31sseqtrid 3992 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝑋)
33 eqeq1 2734 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑦) → (𝑤 = (𝐺𝑥) ↔ (𝐺𝑦) = (𝐺𝑥)))
3433ralima 7214 . . . . . . . . . . . 12 ((𝐺 Fn 𝑋 ∧ (𝐹 “ {(𝐹𝑥)}) ⊆ 𝑋) → (∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥) ↔ ∀𝑦 ∈ (𝐹 “ {(𝐹𝑥)})(𝐺𝑦) = (𝐺𝑥)))
3526, 32, 34syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥) ↔ ∀𝑦 ∈ (𝐹 “ {(𝐹𝑥)})(𝐺𝑦) = (𝐺𝑥)))
3616, 35mpbird 257 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥))
3724fdmd 6701 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐺 = 𝑋)
3837eleq2d 2815 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ dom 𝐺𝑥𝑋))
3938biimpar 477 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐺)
40 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 𝑥𝑋)
41 eqidd 2731 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝐹𝑥))
42 fniniseg 7035 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑥𝑋 ∧ (𝐹𝑥) = (𝐹𝑥))))
434, 42syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑥𝑋 ∧ (𝐹𝑥) = (𝐹𝑥))))
4440, 41, 43mpbir2and 713 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
45 inelcm 4431 . . . . . . . . . . . . 13 ((𝑥 ∈ dom 𝐺𝑥 ∈ (𝐹 “ {(𝐹𝑥)})) → (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
4639, 44, 45syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
47 imadisj 6054 . . . . . . . . . . . . 13 ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) = ∅ ↔ (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) = ∅)
4847necon3bii 2978 . . . . . . . . . . . 12 ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) ≠ ∅ ↔ (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
4946, 48sylibr 234 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
50 eqsn 4796 . . . . . . . . . . 11 ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) ≠ ∅ → ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)} ↔ ∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥)))
5149, 50syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)} ↔ ∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥)))
5236, 51mpbird 257 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)})
5352unieqd 4887 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)})
54 fvex 6874 . . . . . . . . 9 (𝐺𝑥) ∈ V
5554unisn 4893 . . . . . . . 8 {(𝐺𝑥)} = (𝐺𝑥)
5653, 55eqtr2di 2782 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐺𝑥) = (𝐺 “ (𝐹 “ {(𝐹𝑥)})))
5756mpteq2dva 5203 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐺𝑥)) = (𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)}))))
5824feqmptd 6932 . . . . . 6 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
5929ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
6029feqmptd 6932 . . . . . . 7 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
61 eqidd 2731 . . . . . . 7 (𝜑 → (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) = (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))))
62 sneq 4602 . . . . . . . . . 10 (𝑤 = (𝐹𝑥) → {𝑤} = {(𝐹𝑥)})
6362imaeq2d 6034 . . . . . . . . 9 (𝑤 = (𝐹𝑥) → (𝐹 “ {𝑤}) = (𝐹 “ {(𝐹𝑥)}))
6463imaeq2d 6034 . . . . . . . 8 (𝑤 = (𝐹𝑥) → (𝐺 “ (𝐹 “ {𝑤})) = (𝐺 “ (𝐹 “ {(𝐹𝑥)})))
6564unieqd 4887 . . . . . . 7 (𝑤 = (𝐹𝑥) → (𝐺 “ (𝐹 “ {𝑤})) = (𝐺 “ (𝐹 “ {(𝐹𝑥)})))
6659, 60, 61, 65fmptco 7104 . . . . . 6 (𝜑 → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) = (𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)}))))
6757, 58, 663eqtr4d 2775 . . . . 5 (𝜑𝐺 = ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹))
6867, 18eqeltrrd 2830 . . . 4 (𝜑 → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) ∈ (𝐽 Cn 𝐾))
6924ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ 𝐾)
7056, 69eqeltrrd 2830 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾)
7170ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾)
7265eqcomd 2736 . . . . . . . . . . 11 (𝑤 = (𝐹𝑥) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = (𝐺 “ (𝐹 “ {𝑤})))
7372eqcoms 2738 . . . . . . . . . 10 ((𝐹𝑥) = 𝑤 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = (𝐺 “ (𝐹 “ {𝑤})))
7473eleq1d 2814 . . . . . . . . 9 ((𝐹𝑥) = 𝑤 → ( (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾))
7574cbvfo 7267 . . . . . . . 8 (𝐹:𝑋onto𝑌 → (∀𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾 ↔ ∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾))
761, 75syl 17 . . . . . . 7 (𝜑 → (∀𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾 ↔ ∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾))
7771, 76mpbid 232 . . . . . 6 (𝜑 → ∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾)
78 eqid 2730 . . . . . . 7 (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) = (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})))
7978fmpt 7085 . . . . . 6 (∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾 ↔ (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))):𝑌 𝐾)
8077, 79sylib 218 . . . . 5 (𝜑 → (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))):𝑌 𝐾)
81 qtopcn 23608 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) ∧ (𝐹:𝑋onto𝑌 ∧ (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))):𝑌 𝐾)) → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) ∈ (𝐽 Cn 𝐾)))
8217, 22, 1, 80, 81syl22anc 838 . . . 4 (𝜑 → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) ∈ (𝐽 Cn 𝐾)))
8368, 82mpbird 257 . . 3 (𝜑 → (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾))
84 coeq1 5824 . . . 4 (𝑓 = (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) → (𝑓𝐹) = ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹))
8584rspceeqv 3614 . . 3 (((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝐺 = ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹)) → ∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
8683, 67, 85syl2anc 584 . 2 (𝜑 → ∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
87 eqtr2 2751 . . . 4 ((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → (𝑓𝐹) = (𝑔𝐹))
881adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝐹:𝑋onto𝑌)
89 qtoptopon 23598 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
9017, 1, 89syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
9190adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
9222adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝐾 ∈ (TopOn‘ 𝐾))
93 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))
94 cnf2 23143 . . . . . . 7 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)) → 𝑓:𝑌 𝐾)
9591, 92, 93, 94syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑓:𝑌 𝐾)
9695ffnd 6692 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑓 Fn 𝑌)
97 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))
98 cnf2 23143 . . . . . . 7 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)) → 𝑔:𝑌 𝐾)
9991, 92, 97, 98syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑔:𝑌 𝐾)
10099ffnd 6692 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑔 Fn 𝑌)
101 cocan2 7270 . . . . 5 ((𝐹:𝑋onto𝑌𝑓 Fn 𝑌𝑔 Fn 𝑌) → ((𝑓𝐹) = (𝑔𝐹) ↔ 𝑓 = 𝑔))
10288, 96, 100, 101syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → ((𝑓𝐹) = (𝑔𝐹) ↔ 𝑓 = 𝑔))
10387, 102imbitrid 244 . . 3 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → ((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → 𝑓 = 𝑔))
104103ralrimivva 3181 . 2 (𝜑 → ∀𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)∀𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → 𝑓 = 𝑔))
105 coeq1 5824 . . . 4 (𝑓 = 𝑔 → (𝑓𝐹) = (𝑔𝐹))
106105eqeq2d 2741 . . 3 (𝑓 = 𝑔 → (𝐺 = (𝑓𝐹) ↔ 𝐺 = (𝑔𝐹)))
107106reu4 3705 . 2 (∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹) ↔ (∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹) ∧ ∀𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)∀𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → 𝑓 = 𝑔)))
10886, 104, 107sylanbrc 583 1 (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  ∃!wreu 3354  cin 3916  wss 3917  c0 4299  {csn 4592   cuni 4874  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  ccom 5645   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390   qTop cqtop 17473  Topctop 22787  TopOnctopon 22804   Cn ccn 23118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-qtop 17477  df-top 22788  df-topon 22805  df-cn 23121
This theorem is referenced by:  qtophmeo  23711
  Copyright terms: Public domain W3C validator