MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopeu Structured version   Visualization version   GIF version

Theorem qtopeu 23067
Description: Universal property of the quotient topology. If 𝐺 is a function from 𝐽 to 𝐾 which is equal on all equivalent elements under 𝐹, then there is a unique continuous map 𝑓:(𝐽 / 𝐹)⟶𝐾 such that 𝐺 = 𝑓𝐹, and we say that 𝐺 "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopeu.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
qtopeu.3 (𝜑𝐹:𝑋onto𝑌)
qtopeu.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
qtopeu.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐺𝑥) = (𝐺𝑦))
Assertion
Ref Expression
qtopeu (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑓,𝐽,𝑥   𝑓,𝐾,𝑥   𝑥,𝑋,𝑦   𝑓,𝐺,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   𝑓,𝑌,𝑥
Allowed substitution hints:   𝐽(𝑦)   𝐾(𝑦)   𝑋(𝑓)   𝑌(𝑦)

Proof of Theorem qtopeu
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtopeu.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋onto𝑌)
2 fofn 6758 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
31, 2syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝑋)
43adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 𝐹 Fn 𝑋)
5 fniniseg 7010 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → (𝑦 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
64, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑦 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
7 eqcom 2743 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
873anbi3i 1159 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑥𝑋𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)))
9 3anass 1095 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)) ↔ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
108, 9bitri 274 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥))))
11 qtopeu.5 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑦𝑋 ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐺𝑥) = (𝐺𝑦))
1210, 11sylan2br 595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)))) → (𝐺𝑥) = (𝐺𝑦))
1312eqcomd 2742 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)))) → (𝐺𝑦) = (𝐺𝑥))
1413expr 457 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ((𝑦𝑋 ∧ (𝐹𝑦) = (𝐹𝑥)) → (𝐺𝑦) = (𝐺𝑥)))
156, 14sylbid 239 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (𝑦 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝐺𝑦) = (𝐺𝑥)))
1615ralrimiv 3142 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ∀𝑦 ∈ (𝐹 “ {(𝐹𝑥)})(𝐺𝑦) = (𝐺𝑥))
17 qtopeu.1 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ (TopOn‘𝑋))
18 qtopeu.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
19 cntop2 22592 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Top)
21 toptopon2 22267 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2220, 21sylib 217 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
23 cnf2 22600 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋 𝐾)
2417, 22, 18, 23syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑋 𝐾)
2524ffnd 6669 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝑋)
2625adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝐺 Fn 𝑋)
27 cnvimass 6033 . . . . . . . . . . . . 13 (𝐹 “ {(𝐹𝑥)}) ⊆ dom 𝐹
28 fof 6756 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
291, 28syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋𝑌)
3029fdmd 6679 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐹 = 𝑋)
3130adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → dom 𝐹 = 𝑋)
3227, 31sseqtrid 3996 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝑋)
33 eqeq1 2740 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑦) → (𝑤 = (𝐺𝑥) ↔ (𝐺𝑦) = (𝐺𝑥)))
3433ralima 7188 . . . . . . . . . . . 12 ((𝐺 Fn 𝑋 ∧ (𝐹 “ {(𝐹𝑥)}) ⊆ 𝑋) → (∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥) ↔ ∀𝑦 ∈ (𝐹 “ {(𝐹𝑥)})(𝐺𝑦) = (𝐺𝑥)))
3526, 32, 34syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥) ↔ ∀𝑦 ∈ (𝐹 “ {(𝐹𝑥)})(𝐺𝑦) = (𝐺𝑥)))
3616, 35mpbird 256 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥))
3724fdmd 6679 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐺 = 𝑋)
3837eleq2d 2823 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ dom 𝐺𝑥𝑋))
3938biimpar 478 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐺)
40 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 𝑥𝑋)
41 eqidd 2737 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝐹𝑥))
42 fniniseg 7010 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑥𝑋 ∧ (𝐹𝑥) = (𝐹𝑥))))
434, 42syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑥𝑋 ∧ (𝐹𝑥) = (𝐹𝑥))))
4440, 41, 43mpbir2and 711 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
45 inelcm 4424 . . . . . . . . . . . . 13 ((𝑥 ∈ dom 𝐺𝑥 ∈ (𝐹 “ {(𝐹𝑥)})) → (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
4639, 44, 45syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
47 imadisj 6032 . . . . . . . . . . . . 13 ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) = ∅ ↔ (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) = ∅)
4847necon3bii 2996 . . . . . . . . . . . 12 ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) ≠ ∅ ↔ (dom 𝐺 ∩ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
4946, 48sylibr 233 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ≠ ∅)
50 eqsn 4789 . . . . . . . . . . 11 ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) ≠ ∅ → ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)} ↔ ∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥)))
5149, 50syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)} ↔ ∀𝑤 ∈ (𝐺 “ (𝐹 “ {(𝐹𝑥)}))𝑤 = (𝐺𝑥)))
5236, 51mpbird 256 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)})
5352unieqd 4879 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = {(𝐺𝑥)})
54 fvex 6855 . . . . . . . . 9 (𝐺𝑥) ∈ V
5554unisn 4887 . . . . . . . 8 {(𝐺𝑥)} = (𝐺𝑥)
5653, 55eqtr2di 2793 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐺𝑥) = (𝐺 “ (𝐹 “ {(𝐹𝑥)})))
5756mpteq2dva 5205 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝐺𝑥)) = (𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)}))))
5824feqmptd 6910 . . . . . 6 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
5929ffvelcdmda 7035 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
6029feqmptd 6910 . . . . . . 7 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
61 eqidd 2737 . . . . . . 7 (𝜑 → (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) = (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))))
62 sneq 4596 . . . . . . . . . 10 (𝑤 = (𝐹𝑥) → {𝑤} = {(𝐹𝑥)})
6362imaeq2d 6013 . . . . . . . . 9 (𝑤 = (𝐹𝑥) → (𝐹 “ {𝑤}) = (𝐹 “ {(𝐹𝑥)}))
6463imaeq2d 6013 . . . . . . . 8 (𝑤 = (𝐹𝑥) → (𝐺 “ (𝐹 “ {𝑤})) = (𝐺 “ (𝐹 “ {(𝐹𝑥)})))
6564unieqd 4879 . . . . . . 7 (𝑤 = (𝐹𝑥) → (𝐺 “ (𝐹 “ {𝑤})) = (𝐺 “ (𝐹 “ {(𝐹𝑥)})))
6659, 60, 61, 65fmptco 7075 . . . . . 6 (𝜑 → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) = (𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)}))))
6757, 58, 663eqtr4d 2786 . . . . 5 (𝜑𝐺 = ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹))
6867, 18eqeltrrd 2839 . . . 4 (𝜑 → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) ∈ (𝐽 Cn 𝐾))
6924ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ 𝐾)
7056, 69eqeltrrd 2839 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾)
7170ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾)
7265eqcomd 2742 . . . . . . . . . . 11 (𝑤 = (𝐹𝑥) → (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = (𝐺 “ (𝐹 “ {𝑤})))
7372eqcoms 2744 . . . . . . . . . 10 ((𝐹𝑥) = 𝑤 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) = (𝐺 “ (𝐹 “ {𝑤})))
7473eleq1d 2822 . . . . . . . . 9 ((𝐹𝑥) = 𝑤 → ( (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾))
7574cbvfo 7235 . . . . . . . 8 (𝐹:𝑋onto𝑌 → (∀𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾 ↔ ∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾))
761, 75syl 17 . . . . . . 7 (𝜑 → (∀𝑥𝑋 (𝐺 “ (𝐹 “ {(𝐹𝑥)})) ∈ 𝐾 ↔ ∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾))
7771, 76mpbid 231 . . . . . 6 (𝜑 → ∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾)
78 eqid 2736 . . . . . . 7 (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) = (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})))
7978fmpt 7058 . . . . . 6 (∀𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤})) ∈ 𝐾 ↔ (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))):𝑌 𝐾)
8077, 79sylib 217 . . . . 5 (𝜑 → (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))):𝑌 𝐾)
81 qtopcn 23065 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) ∧ (𝐹:𝑋onto𝑌 ∧ (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))):𝑌 𝐾)) → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) ∈ (𝐽 Cn 𝐾)))
8217, 22, 1, 80, 81syl22anc 837 . . . 4 (𝜑 → ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹) ∈ (𝐽 Cn 𝐾)))
8368, 82mpbird 256 . . 3 (𝜑 → (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾))
84 coeq1 5813 . . . 4 (𝑓 = (𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) → (𝑓𝐹) = ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹))
8584rspceeqv 3595 . . 3 (((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝐺 = ((𝑤𝑌 (𝐺 “ (𝐹 “ {𝑤}))) ∘ 𝐹)) → ∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
8683, 67, 85syl2anc 584 . 2 (𝜑 → ∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
87 eqtr2 2760 . . . 4 ((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → (𝑓𝐹) = (𝑔𝐹))
881adantr 481 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝐹:𝑋onto𝑌)
89 qtoptopon 23055 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
9017, 1, 89syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
9190adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
9222adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝐾 ∈ (TopOn‘ 𝐾))
93 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))
94 cnf2 22600 . . . . . . 7 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)) → 𝑓:𝑌 𝐾)
9591, 92, 93, 94syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑓:𝑌 𝐾)
9695ffnd 6669 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑓 Fn 𝑌)
97 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))
98 cnf2 22600 . . . . . . 7 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)) → 𝑔:𝑌 𝐾)
9991, 92, 97, 98syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑔:𝑌 𝐾)
10099ffnd 6669 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → 𝑔 Fn 𝑌)
101 cocan2 7238 . . . . 5 ((𝐹:𝑋onto𝑌𝑓 Fn 𝑌𝑔 Fn 𝑌) → ((𝑓𝐹) = (𝑔𝐹) ↔ 𝑓 = 𝑔))
10288, 96, 100, 101syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → ((𝑓𝐹) = (𝑔𝐹) ↔ 𝑓 = 𝑔))
10387, 102imbitrid 243 . . 3 ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾))) → ((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → 𝑓 = 𝑔))
104103ralrimivva 3197 . 2 (𝜑 → ∀𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)∀𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → 𝑓 = 𝑔))
105 coeq1 5813 . . . 4 (𝑓 = 𝑔 → (𝑓𝐹) = (𝑔𝐹))
106105eqeq2d 2747 . . 3 (𝑓 = 𝑔 → (𝐺 = (𝑓𝐹) ↔ 𝐺 = (𝑔𝐹)))
107106reu4 3689 . 2 (∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹) ↔ (∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹) ∧ ∀𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)∀𝑔 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)((𝐺 = (𝑓𝐹) ∧ 𝐺 = (𝑔𝐹)) → 𝑓 = 𝑔)))
10886, 104, 107sylanbrc 583 1 (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn 𝐾)𝐺 = (𝑓𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  ∃!wreu 3351  cin 3909  wss 3910  c0 4282  {csn 4586   cuni 4865  cmpt 5188  ccnv 5632  dom cdm 5633  cima 5636  ccom 5637   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357   qTop cqtop 17385  Topctop 22242  TopOnctopon 22259   Cn ccn 22575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-qtop 17389  df-top 22243  df-topon 22260  df-cn 22578
This theorem is referenced by:  qtophmeo  23168
  Copyright terms: Public domain W3C validator